On convergence in $L_1[0,1]$ norm of some irregular linear means of Walsh–Fourier series
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the convergence in $L_1[0,1]$ of some irregular linear means of Fourier–Walsh series of integrable functions after correcting these functions on sets of small measure is studied.
Keywords: triangular matrix, irregular linear means, Dirichlet kernels.
@article{UZERU_2012_1_a1,
     author = {L. N. Galoyan},
     title = {On convergence in $L_1[0,1]$ norm of some irregular  linear means of {Walsh{\textendash}Fourier} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {10--15},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a1/}
}
TY  - JOUR
AU  - L. N. Galoyan
TI  - On convergence in $L_1[0,1]$ norm of some irregular  linear means of Walsh–Fourier series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 10
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a1/
LA  - en
ID  - UZERU_2012_1_a1
ER  - 
%0 Journal Article
%A L. N. Galoyan
%T On convergence in $L_1[0,1]$ norm of some irregular  linear means of Walsh–Fourier series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 10-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_1_a1/
%G en
%F UZERU_2012_1_a1
L. N. Galoyan. On convergence in $L_1[0,1]$ norm of some irregular  linear means of Walsh–Fourier series. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 10-15. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a1/

[1] B.I. Golubov, A.F. Efimov, V.A. Skvortzov, Walsh Series and Transforms, Nauka, M., 1987, 340 pp. (in Russian) | MR | Zbl

[2] Proc. Steklov Inst. Math., 134 (1977), 229–245 | MR | Zbl | Zbl

[3] M.G. Grigoryan, “On the Fourier-Walsh Coefficients”, Real Analysis Exchange, 35:1 (2009), 157–166 | MR

[4] Soviet Math. (Iz. VUZ), 34:11 (1990), 9–20 | MR | Zbl