Splitting automorphisms of free Burnside groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 62-64

Voir la notice de l'article provenant de la source Math-Net.Ru

We have proved, that if $n\geq1003$ is an arbitrary odd number and $\varphi$ is a splitting automorphism of period $n$ of group $B(m, n)$ that has a prime order, then $\varphi$ is inner automorphism.
Keywords: splitting automorphism, free Burside group, holomorph of the group.
@article{UZERU_2011_3_a9,
     author = {V. S. Atabekyan},
     title = {Splitting automorphisms of free {Burnside} groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {62--64},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a9/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Splitting automorphisms of free Burnside groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 62
EP  - 64
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a9/
LA  - en
ID  - UZERU_2011_3_a9
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Splitting automorphisms of free Burnside groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 62-64
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_3_a9/
%G en
%F UZERU_2011_3_a9
V. S. Atabekyan. Splitting automorphisms of free Burnside groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 62-64. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a9/