Plasmonic mode confinement in InAs-SiO$_2$-Si waveguide in Terahertz region
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 58-61.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dispersion relation of a novel semiconductor-gap-dielectric waveguide in terahertz range are investigated. It is shown that InAs-SiO$_2$-Si structure supports strongly confined guided mode with а sizes $0.0016 \lambda\times 0.02\lambda$ at $1$ THz.
Keywords: waveguides
Mots-clés : terahertz, surface plasmons.
@article{UZERU_2011_3_a8,
     author = {H. S. Hakobyan},
     title = {Plasmonic mode confinement in {InAs-SiO}$_2${-Si} waveguide in {Terahertz} region},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--61},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a8/}
}
TY  - JOUR
AU  - H. S. Hakobyan
TI  - Plasmonic mode confinement in InAs-SiO$_2$-Si waveguide in Terahertz region
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 58
EP  - 61
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a8/
LA  - en
ID  - UZERU_2011_3_a8
ER  - 
%0 Journal Article
%A H. S. Hakobyan
%T Plasmonic mode confinement in InAs-SiO$_2$-Si waveguide in Terahertz region
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 58-61
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_3_a8/
%G en
%F UZERU_2011_3_a8
H. S. Hakobyan. Plasmonic mode confinement in InAs-SiO$_2$-Si waveguide in Terahertz region. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 58-61. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a8/

[1] M. Tonouchi, “Cutting-edge terahertz technology”, Nature Photon., 1 (2007), 97 | DOI

[2] S. Bozhevolnyi, Plasmonic Nanoguides and Circuits, Pan Stanford, Singapore, 2008

[3] R.F. Oulton, V.J. Sorger, D.A. Genov, D.F.P. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation”, Nature Photon., 2 (2008), 496 | DOI

[4] J.B. Pendry, L.M. Moreno, F. Garcia-Vidal, “Mimicking Surface Plasmons with Structured Surfaces”, Science, 305 (2004), 847 | DOI

[5] J.G. Rivas, M. Kuttge, H. Kurz, P.H. Bolivar, J.A. Snchez-Gil, “Low-frequency active surface plasmon optics on semiconductors”, Appl. Phys. Lett., 88 (2006), 082106 | DOI

[6] I. Avrutsky, R. Soref, W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap”, Opt. Express, 18 (2010), 348 | DOI

[7] Y.B. Li, R.A. Stradling, T. Knight, J.R. Birch, R.H. Thomas, C.C. Phillips, I.T. Ferguson, “Infrared reflection and transmission of undoped and Si-doped InAs grown on GaAs by molecular beam epitaxy”, Semicond. Sci. Technol., 8 (1993), 101 | DOI

[8] D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors”, J. Opt. Soc. Am. B, 7 (1990), 2006 | DOI