On the optimal stabilization of a double mathematical pendulum having a movable suspension center
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of optimal stabilizatioin of a double pendulum, when its suspension center moved in the horizontal direction according to the given law, has been treated. The problem was reduced to the case of a linear nonuniform system that was solved in the event when the first and the second pendulums had equal masses and lengths. An optimal Lyapunov function and an optimal control action have been constructed.
Keywords: driven double pendulum, optimal stabilization, Lyapunov function, Lyapunov–Bellman method.
Mots-clés : equations of motion, Lagrange's equations
@article{UZERU_2011_3_a4,
     author = {S. G. Shahinyan and G. N. Kirakosyan},
     title = {On the optimal stabilization of a double mathematical pendulum having a movable suspension center},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {31--39},
     publisher = {mathdoc},
     number = {3},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/}
}
TY  - JOUR
AU  - S. G. Shahinyan
AU  - G. N. Kirakosyan
TI  - On the optimal stabilization of a double mathematical pendulum having a movable suspension center
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 31
EP  - 39
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/
LA  - en
ID  - UZERU_2011_3_a4
ER  - 
%0 Journal Article
%A S. G. Shahinyan
%A G. N. Kirakosyan
%T On the optimal stabilization of a double mathematical pendulum having a movable suspension center
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 31-39
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/
%G en
%F UZERU_2011_3_a4
S. G. Shahinyan; G. N. Kirakosyan. On the optimal stabilization of a double mathematical pendulum having a movable suspension center. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 31-39. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/

[1] J.V. Strett, Theory of Sound, v. 1, Gos. Izd-vo Tekhniko-Teoreticheskoy Literaturi, M., 1955, 504 pp. (in Russian)

[2] A. Stephenson, “A new type of dynamical stability”, Mem. and Proc. of the Manchester Literary and Philosophical Soc., 55:8 (1908), 1–10

[3] P.L. Kapitsa, “The dynamic stability of a pendulum with a vibrating point of suspension”, JETF, 21:5 (1951), 588–597 (in Russian)

[4] O.V. Kholostova, “On the Motions of a Double Pendulum with Vibrating Suspension Point”, Izv. RAN. Mechanics of Solids, 2009, no. 2, 25–40 (in Russian)

[5] A.A. Seyranyan, A.P. Seyranyan, “The stability of an inverted pendulum with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 70:5 (2006), 835–843 (in Russian)

[6] V.N. Nespirniy, V.A. Korolev, “Stabilization of oscillations of a pendulum with a movable point of suspension with respect to the inclined balance”, Mechanics of Solids, Ukrainian collection of research works, 39, 2009, 195–206 (in Russian)

[7] G.N. Kirakosyan, “Ob Optimalnoy Stabilizatsii Matematicheskogo Mayatnika s Podvojnoy Tochkoy Podvesa”, Sbornik Statey: Yubileynaya Nauchnaya Sesiya Posvyashchenaya 90 Letiyu EGU, v. 1, YSU press, Yer., 2010, 216–220 (in Russian)

[8] N.N. Bukhgoltz, Basic course of theoretical mechanics, v. 2, Nauka, M., 1972, 332 pp. (in Russian)

[9] E.G. Albrekht, G.S. Shelement'ev, Lekcii po Teorii Stablizacii, UrGU, Sverdlovsk, 1972, 274 pp. (in Russian)

[10] B.P. Demidovich, Lekcii po Matematicheskoy Teorii Ustojchivosti, v. 1, Gos. Izd-vo Tekhniko-Teoreticheskoy Literaturi, M., 1955, 472 pp. (in Russian)