Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2011_3_a4, author = {S. G. Shahinyan and G. N. Kirakosyan}, title = {On the optimal stabilization of a double mathematical pendulum having a movable suspension center}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {31--39}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/} }
TY - JOUR AU - S. G. Shahinyan AU - G. N. Kirakosyan TI - On the optimal stabilization of a double mathematical pendulum having a movable suspension center JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 31 EP - 39 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/ LA - en ID - UZERU_2011_3_a4 ER -
%0 Journal Article %A S. G. Shahinyan %A G. N. Kirakosyan %T On the optimal stabilization of a double mathematical pendulum having a movable suspension center %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2011 %P 31-39 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/ %G en %F UZERU_2011_3_a4
S. G. Shahinyan; G. N. Kirakosyan. On the optimal stabilization of a double mathematical pendulum having a movable suspension center. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 31-39. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a4/
[1] J.V. Strett, Theory of Sound, v. 1, Gos. Izd-vo Tekhniko-Teoreticheskoy Literaturi, M., 1955, 504 pp. (in Russian)
[2] A. Stephenson, “A new type of dynamical stability”, Mem. and Proc. of the Manchester Literary and Philosophical Soc., 55:8 (1908), 1–10
[3] P.L. Kapitsa, “The dynamic stability of a pendulum with a vibrating point of suspension”, JETF, 21:5 (1951), 588–597 (in Russian)
[4] O.V. Kholostova, “On the Motions of a Double Pendulum with Vibrating Suspension Point”, Izv. RAN. Mechanics of Solids, 2009, no. 2, 25–40 (in Russian)
[5] A.A. Seyranyan, A.P. Seyranyan, “The stability of an inverted pendulum with a vibrating suspension point”, Journal of Applied Mathematics and Mechanics, 70:5 (2006), 835–843 (in Russian)
[6] V.N. Nespirniy, V.A. Korolev, “Stabilization of oscillations of a pendulum with a movable point of suspension with respect to the inclined balance”, Mechanics of Solids, Ukrainian collection of research works, 39, 2009, 195–206 (in Russian)
[7] G.N. Kirakosyan, “Ob Optimalnoy Stabilizatsii Matematicheskogo Mayatnika s Podvojnoy Tochkoy Podvesa”, Sbornik Statey: Yubileynaya Nauchnaya Sesiya Posvyashchenaya 90 Letiyu EGU, v. 1, YSU press, Yer., 2010, 216–220 (in Russian)
[8] N.N. Bukhgoltz, Basic course of theoretical mechanics, v. 2, Nauka, M., 1972, 332 pp. (in Russian)
[9] E.G. Albrekht, G.S. Shelement'ev, Lekcii po Teorii Stablizacii, UrGU, Sverdlovsk, 1972, 274 pp. (in Russian)
[10] B.P. Demidovich, Lekcii po Matematicheskoy Teorii Ustojchivosti, v. 1, Gos. Izd-vo Tekhniko-Teoreticheskoy Literaturi, M., 1955, 472 pp. (in Russian)