Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2011_3_a2, author = {H. S. Harutyunyan}, title = {Chord length distribution function for lens}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {17--22}, publisher = {mathdoc}, number = {3}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a2/} }
TY - JOUR AU - H. S. Harutyunyan TI - Chord length distribution function for lens JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 17 EP - 22 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a2/ LA - en ID - UZERU_2011_3_a2 ER -
H. S. Harutyunyan. Chord length distribution function for lens. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 17-22. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a2/
[1] R.V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley and Sons, Chichester, 1982 | MR | Zbl
[2] R. Schneider, W. Weil, Stochastic and Integral Geometry, Springer–Verlag, Berlin, 2008 | MR | Zbl
[3] R.V. Ambartzumian, Factorization Calculus and Geometric Probability, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[4] W. Gille, “The chord length distribution of parallelepipeds with their limiting cases”, Exp. Tech. Phys., 36 (1988), 197–208
[5] H.S. Harutyunyan, V.K. Ohanyan, “The chord length distribution function for regular polygons”, Advances in Applied Probability (SGSA), 41:2 (2009), 358–366, University of Sheffield | DOI | MR
[6] N.G.Aharonyan , V.K. Ohanyan, “Chord length distribution functions for polygons”, Journal of Contemporary Mathematical Analysis NAS RA, 40:4 (2005), 43–56 | MR | Zbl
[7] H.S. Harutyunyan, “Chord length distribution function for a regular hexagon”, Proceedings of the YSU, 2007, no. 1, 17–24 (in Russian)