Polynomial length proofs for some class of Tseitin formulas
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 3-8
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the notion of quasi-hard determinative formulas is introduced and the proof complexities of such formulas are investigated. For some class of quasi-hard determinative formulas the same order lower and upper bounds for the length of proofs are obtained in several proof systems, basing on disjunctive normal forms (conjunctive normal forms).
Keywords:
proof complexity, Split Tree, resolution system, resolution over linear equations, determinative conjunct, quasi-hard determinative formula.
@article{UZERU_2011_3_a0,
author = {A. G. Abajian},
title = {Polynomial length proofs for some class of {Tseitin} formulas},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--8},
publisher = {mathdoc},
number = {3},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_3_a0/}
}
TY - JOUR AU - A. G. Abajian TI - Polynomial length proofs for some class of Tseitin formulas JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 3 EP - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_3_a0/ LA - en ID - UZERU_2011_3_a0 ER -
A. G. Abajian. Polynomial length proofs for some class of Tseitin formulas. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2011), pp. 3-8. http://geodesic.mathdoc.fr/item/UZERU_2011_3_a0/