$S$-universality in $2$-categories
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 39-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

For $2$-categories the notion of $S$-universality is introduced and investigated.
Keywords: $2$-categories, $2$-functors, $S$-universal morphisms.
Mots-clés : $2$-transformations
@article{UZERU_2011_2_a6,
     author = {S. G. Dalalyan},
     title = {$S$-universality  in  $2$-categories},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {39--44},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a6/}
}
TY  - JOUR
AU  - S. G. Dalalyan
TI  - $S$-universality  in  $2$-categories
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 39
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a6/
LA  - en
ID  - UZERU_2011_2_a6
ER  - 
%0 Journal Article
%A S. G. Dalalyan
%T $S$-universality  in  $2$-categories
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 39-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a6/
%G en
%F UZERU_2011_2_a6
S. G. Dalalyan. $S$-universality  in  $2$-categories. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 39-44. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a6/

[1] P. Samuel, “On universal mappings and free topological groups”, Bull. Am. Math. Soc., 54 (1948), 591-–598 | DOI | MR | Zbl

[2] N. Bourbaki, Élément de Mathèmatique, Livre I, Structures, ch. 4, v. VII, Algebre, Hermann, Paris, 1960

[3] A. Grothendieck, Complements sur les biextensions. Proprietes generales des biextensions des schemas en groupes, Lecture Notes in Math., 269, Springer-Verlag, 1972 | MR

[4] S.H. Dalalyan, “Grothendieck’s extension of the fundamental theorem of Galois theory in abstract categories”, Journal of Contemporary Mathematical Analysis, 46:1 (2011), 48–55 | DOI | MR | Zbl

[5] J.W. Gray, Formal Category Theory: Adjointness for $2$-Categories, Lecture Notes in Math., 391, Springer, Berlin–Heidelberg–New York, 1974 | MR | Zbl

[6] J. Bénabou, “Introduction to bicategories”, Reports of the Midwest Category Seminar, Lecture Notes in Math, 47, Springer, Berlin–Heidelberg–New York, 1967, 1–77 | DOI | MR

[7] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Ergeb. der Math. und ihre Grenzgebiete, Springer, Berlin–Heidelberg–New York, 1967 | MR | Zbl