On the structure of Wiener–Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz–Schrödinger еquation with the boundary conditions of the first and second type
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 22-26
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we investigate the Fredholm property of Wiener–Hopf operator for anisotropic boundary value problem for the Helmholtz–Schrödinger equation with the boundary conditions of the first and second type on the line $y=0$.
Keywords:
Wiener–Hopf operator, Fredholm property.
@article{UZERU_2011_2_a3,
author = {S. A. Hosseiny Matikolai},
title = {On the structure of {Wiener{\textendash}Hopf} operator corresponding to anisotropic boundary value problem, connected with {Helmholtz{\textendash}Schr\"odinger} {\cyre}quation with the boundary conditions of the first and second type},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {22--26},
year = {2011},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/}
}
TY - JOUR AU - S. A. Hosseiny Matikolai TI - On the structure of Wiener–Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz–Schrödinger еquation with the boundary conditions of the first and second type JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 22 EP - 26 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/ LA - en ID - UZERU_2011_2_a3 ER -
%0 Journal Article %A S. A. Hosseiny Matikolai %T On the structure of Wiener–Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz–Schrödinger еquation with the boundary conditions of the first and second type %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2011 %P 22-26 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/ %G en %F UZERU_2011_2_a3
S. A. Hosseiny Matikolai. On the structure of Wiener–Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz–Schrödinger еquation with the boundary conditions of the first and second type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 22-26. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/
[1] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka, M., 1973. | MR
[2] F.O. Speck, “Sommerfeld diffraction problems with first and second kind boundary conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl
[3] S.A. Hosseiny Matikolai, A.H. Kamalyan, M.I. Karakhanyan, “On an Anisotropic Boundary Problem of Diffraction with First And Second Type Boundary Conditions”, Proceedings of the YSU. Physical Mathematical Sciences, 2010, no. 2, 12–15 | Zbl
[4] S.G. Mikhlin, S. Prösdorf, Singular Integral Operators, Springer Verlag, Berlin, 1986 | MR | Zbl