Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2011_2_a3, author = {S. A. Hosseiny Matikolai}, title = {On the structure of {Wiener--Hopf} operator corresponding to anisotropic boundary value problem, connected with {Helmholtz--Schr\"{o}dinger} {\cyre}quation with the boundary conditions of the first and second type}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {22--26}, publisher = {mathdoc}, number = {2}, year = {2011}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/} }
TY - JOUR AU - S. A. Hosseiny Matikolai TI - On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 22 EP - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/ LA - en ID - UZERU_2011_2_a3 ER -
%0 Journal Article %A S. A. Hosseiny Matikolai %T On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2011 %P 22-26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/ %G en %F UZERU_2011_2_a3
S. A. Hosseiny Matikolai. On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 22-26. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/
[1] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka, M., 1973. | MR
[2] F.O. Speck, “Sommerfeld diffraction problems with first and second kind boundary conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl
[3] S.A. Hosseiny Matikolai, A.H. Kamalyan, M.I. Karakhanyan, “On an Anisotropic Boundary Problem of Diffraction with First And Second Type Boundary Conditions”, Proceedings of the YSU. Physical Mathematical Sciences, 2010, no. 2, 12–15 | Zbl
[4] S.G. Mikhlin, S. Prösdorf, Singular Integral Operators, Springer Verlag, Berlin, 1986 | MR | Zbl