On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the Fredholm property of Wiener–Hopf operator for anisotropic boundary value problem for the Helmholtz–Schrödinger equation with the boundary conditions of the first and second type on the line $y=0$.
Keywords: Wiener–Hopf operator, Fredholm property.
@article{UZERU_2011_2_a3,
     author = {S. A. Hosseiny Matikolai},
     title = {On the structure of {Wiener--Hopf} operator corresponding to anisotropic boundary value problem, connected with {Helmholtz--Schr\"{o}dinger} {\cyre}quation with the boundary conditions of the first and second type},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--26},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/}
}
TY  - JOUR
AU  - S. A. Hosseiny Matikolai
TI  - On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 22
EP  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/
LA  - en
ID  - UZERU_2011_2_a3
ER  - 
%0 Journal Article
%A S. A. Hosseiny Matikolai
%T On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 22-26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/
%G en
%F UZERU_2011_2_a3
S. A. Hosseiny Matikolai. On the structure of Wiener--Hopf operator corresponding to anisotropic boundary value problem, connected with Helmholtz--Schr\"{o}dinger еquation with the boundary conditions of the first and second type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 22-26. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a3/

[1] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka, M., 1973. | MR

[2] F.O. Speck, “Sommerfeld diffraction problems with first and second kind boundary conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl

[3] S.A. Hosseiny Matikolai, A.H. Kamalyan, M.I. Karakhanyan, “On an Anisotropic Boundary Problem of Diffraction with First And Second Type Boundary Conditions”, Proceedings of the YSU. Physical Mathematical Sciences, 2010, no. 2, 12–15 | Zbl

[4] S.G. Mikhlin, S. Prösdorf, Singular Integral Operators, Springer Verlag, Berlin, 1986 | MR | Zbl