On bounded operators in $L^p$ spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 11-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the linear operators that depend on a normal pair of weight functions $\{\varphi,\psi\}$ in the Banach spaces $L^p(D)$, where $D$ is the unit disk in the complex plane, are considered. It is investigated, for which values of these operators are bounded.
Keywords: Banach space, analytic function, bounded operator.
@article{UZERU_2011_2_a1,
     author = {A. I. Petrosyan and A. F. Beknazaryan},
     title = {On  bounded operators in $L^p$  spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {11--16},
     publisher = {mathdoc},
     number = {2},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_2_a1/}
}
TY  - JOUR
AU  - A. I. Petrosyan
AU  - A. F. Beknazaryan
TI  - On  bounded operators in $L^p$  spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 11
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_2_a1/
LA  - en
ID  - UZERU_2011_2_a1
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%A A. F. Beknazaryan
%T On  bounded operators in $L^p$  spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 11-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_2_a1/
%G en
%F UZERU_2011_2_a1
A. I. Petrosyan; A. F. Beknazaryan. On  bounded operators in $L^p$  spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2011), pp. 11-16. http://geodesic.mathdoc.fr/item/UZERU_2011_2_a1/

[1] A.L. Shields, D.L. Williams, “Bonded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR

[2] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer Ver-lag, 2000 | MR | Zbl

[3] P. L. Duren, Theory of $H^p$ Spaces, Academic Press, NY, 1970 | MR