Stability of frequency distribution in frame of natural parametrization. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper the stability problem for frequency distribution in frame of natural parameterization is formulated and discussed. The case of finite number of independent parameters is characterized. A corresponding stability problem is investigated in terms of $l_p$-metric.
Keywords: frequency distribution, $l_p$-metric, stability by parameters.
@article{UZERU_2011_1_a3,
     author = {E. A. Danielyan and S. K. Arzumanyan},
     title = {Stability of frequency distribution in frame of natural parametrization. {I}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--22},
     year = {2011},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/}
}
TY  - JOUR
AU  - E. A. Danielyan
AU  - S. K. Arzumanyan
TI  - Stability of frequency distribution in frame of natural parametrization. I
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 18
EP  - 22
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/
LA  - en
ID  - UZERU_2011_1_a3
ER  - 
%0 Journal Article
%A E. A. Danielyan
%A S. K. Arzumanyan
%T Stability of frequency distribution in frame of natural parametrization. I
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 18-22
%N 1
%U http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/
%G en
%F UZERU_2011_1_a3
E. A. Danielyan; S. K. Arzumanyan. Stability of frequency distribution in frame of natural parametrization. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/

[1] J. Astola, E. Danielian, Frequency Distributions in Biomolecular Systems and Growing Networks, TICSP, Series, 31, Tampere, 2006

[2] E.A. Danielian, G.P. Avagyan, “A representation of regularly varying distributions”, Matematika v vishey shkole, 4:4 (2008), 17–23 (in Russian)

[3] S.P. Yakovlev, Vestnik SEUA. Seria Modelirovanie, Optimizatsia, Upravlenie, 11:1 (2008) | Zbl