Stability of frequency distribution in frame of natural parametrization. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the stability problem for frequency distribution in frame of natural parameterization is formulated and discussed. The case of finite number of independent parameters is characterized. A corresponding stability problem is investigated in terms of $l_p$-metric.
Keywords:
frequency distribution, $l_p$-metric, stability by parameters.
@article{UZERU_2011_1_a3,
author = {E. A. Danielyan and S. K. Arzumanyan},
title = {Stability of frequency distribution in frame of natural parametrization. {I}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {18--22},
year = {2011},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/}
}
TY - JOUR AU - E. A. Danielyan AU - S. K. Arzumanyan TI - Stability of frequency distribution in frame of natural parametrization. I JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 18 EP - 22 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/ LA - en ID - UZERU_2011_1_a3 ER -
%0 Journal Article %A E. A. Danielyan %A S. K. Arzumanyan %T Stability of frequency distribution in frame of natural parametrization. I %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2011 %P 18-22 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/ %G en %F UZERU_2011_1_a3
E. A. Danielyan; S. K. Arzumanyan. Stability of frequency distribution in frame of natural parametrization. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/
[1] J. Astola, E. Danielian, Frequency Distributions in Biomolecular Systems and Growing Networks, TICSP, Series, 31, Tampere, 2006
[2] E.A. Danielian, G.P. Avagyan, “A representation of regularly varying distributions”, Matematika v vishey shkole, 4:4 (2008), 17–23 (in Russian)
[3] S.P. Yakovlev, Vestnik SEUA. Seria Modelirovanie, Optimizatsia, Upravlenie, 11:1 (2008) | Zbl