Stability of frequency distribution in frame of natural parametrization. I
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the stability problem for frequency distribution in frame of natural parameterization is formulated and discussed. The case of finite number of independent parameters is characterized. A corresponding stability problem is investigated in terms of $l_p$-metric.
Keywords: frequency distribution, $l_p$-metric, stability by parameters.
@article{UZERU_2011_1_a3,
     author = {E. A. Danielyan and S. K. Arzumanyan},
     title = {Stability of frequency distribution in frame of natural parametrization. {I}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--22},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/}
}
TY  - JOUR
AU  - E. A. Danielyan
AU  - S. K. Arzumanyan
TI  - Stability of frequency distribution in frame of natural parametrization. I
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 18
EP  - 22
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/
LA  - en
ID  - UZERU_2011_1_a3
ER  - 
%0 Journal Article
%A E. A. Danielyan
%A S. K. Arzumanyan
%T Stability of frequency distribution in frame of natural parametrization. I
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 18-22
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/
%G en
%F UZERU_2011_1_a3
E. A. Danielyan; S. K. Arzumanyan. Stability of frequency distribution in frame of natural parametrization. I. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a3/

[1] J. Astola, E. Danielian, Frequency Distributions in Biomolecular Systems and Growing Networks, TICSP, Series, 31, Tampere, 2006

[2] E.A. Danielian, G.P. Avagyan, “A representation of regularly varying distributions”, Matematika v vishey shkole, 4:4 (2008), 17–23 (in Russian)

[3] S.P. Yakovlev, Vestnik SEUA. Seria Modelirovanie, Optimizatsia, Upravlenie, 11:1 (2008) | Zbl