Completely invariant subspaces of free algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65
Voir la notice de l'article provenant de la source Math-Net.Ru
A structural theorem is proved for $\mathrm{pMqBM}$ completely invariant subspaces of free associative algebras with a unit, having a countable number of free variables over the field of characteristic zero. In particular, it is shown that such spaces contain a Lie nilpotent polynomial.
Keywords:
free algebra, $T$-ideals, linear space, Lie nilpotent polynomial.
Mots-clés : endomorphism, invariant space, module
Mots-clés : endomorphism, invariant space, module
@article{UZERU_2011_1_a11,
author = {N. G. Nadzharyan},
title = {Completely invariant subspaces of free algebras},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {64--65},
publisher = {mathdoc},
number = {1},
year = {2011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/}
}
TY - JOUR AU - N. G. Nadzharyan TI - Completely invariant subspaces of free algebras JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2011 SP - 64 EP - 65 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/ LA - en ID - UZERU_2011_1_a11 ER -
N. G. Nadzharyan. Completely invariant subspaces of free algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/