Completely invariant subspaces of free algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

A structural theorem is proved for $\mathrm{pMqBM}$ completely invariant subspaces of free associative algebras with a unit, having a countable number of free variables over the field of characteristic zero. In particular, it is shown that such spaces contain a Lie nilpotent polynomial.
Keywords: free algebra, $T$-ideals, linear space, Lie nilpotent polynomial.
Mots-clés : endomorphism, invariant space, module
@article{UZERU_2011_1_a11,
     author = {N. G. Nadzharyan},
     title = {Completely invariant subspaces of free algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {64--65},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/}
}
TY  - JOUR
AU  - N. G. Nadzharyan
TI  - Completely invariant subspaces of free algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 64
EP  - 65
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/
LA  - en
ID  - UZERU_2011_1_a11
ER  - 
%0 Journal Article
%A N. G. Nadzharyan
%T Completely invariant subspaces of free algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 64-65
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/
%G en
%F UZERU_2011_1_a11
N. G. Nadzharyan. Completely invariant subspaces of free algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/

[1] Yu.P. Razmyslov, Identities of Algebras and their Representations., Nauka, M., 1989 (in Russian) | MR | Zbl

[2] N.G. Najaryan, “On the invariant spaces of free associative algebras ”, Algebra, Geometry their Applications. Seminar Proceedings, 3–4, YSU-press, 2004, 123–125 | MR

[3] Math. USSR-Izv., 7:5 (1973), 1011–1038 | DOI | MR | Zbl

[4] N.G. Najaryan, “On $\sigma$-generated Linear $T$-spaces”, XIX All-Union Algebraic Conference (Thesis of Information, L'vov 1987), v. 1 (in Russian) | Zbl

[5] N.G. Najaryan, “On the full invariant spaces of free associative algebras ”, Uchenye Zapiski (Armenian State Pedagogical University), 2007, no. 1–2 (5–6), 54–57 (in Russian)