Completely invariant subspaces of free algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65
Cet article a éte moissonné depuis la source Math-Net.Ru
A structural theorem is proved for $\mathrm{pMqBM}$ completely invariant subspaces of free associative algebras with a unit, having a countable number of free variables over the field of characteristic zero. In particular, it is shown that such spaces contain a Lie nilpotent polynomial.
Keywords:
free algebra, $T$-ideals, linear space, Lie nilpotent polynomial.
Mots-clés : endomorphism, invariant space, module
Mots-clés : endomorphism, invariant space, module
@article{UZERU_2011_1_a11,
author = {N. G. Nadzharyan},
title = {Completely invariant subspaces of free algebras},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {64--65},
year = {2011},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/}
}
N. G. Nadzharyan. Completely invariant subspaces of free algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 64-65. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a11/
[1] Yu.P. Razmyslov, Identities of Algebras and their Representations., Nauka, M., 1989 (in Russian) | MR | Zbl
[2] N.G. Najaryan, “On the invariant spaces of free associative algebras ”, Algebra, Geometry their Applications. Seminar Proceedings, 3–4, YSU-press, 2004, 123–125 | MR
[3] Math. USSR-Izv., 7:5 (1973), 1011–1038 | DOI | MR | Zbl
[4] N.G. Najaryan, “On $\sigma$-generated Linear $T$-spaces”, XIX All-Union Algebraic Conference (Thesis of Information, L'vov 1987), v. 1 (in Russian) | Zbl
[5] N.G. Najaryan, “On the full invariant spaces of free associative algebras ”, Uchenye Zapiski (Armenian State Pedagogical University), 2007, no. 1–2 (5–6), 54–57 (in Russian)