On the anisotropic boundary value problem, connected with Helmholtze-Schr\"{o}dinger еquation, under the boundary conditions of the first and second type
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 7-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the solvability of the boundary value problem, connected with the anisotropic Helmholtz-Schrödinger equation, under the boundary conditions of the first and second type on the line $y=0$.
Keywords: Helmholtz-Shrödinger equation, factorization of matrix-function.
@article{UZERU_2011_1_a1,
     author = {S. A. Hosseiny Matikolai},
     title = {On the anisotropic boundary value problem, connected with {Helmholtze-Schr\"{o}dinger} {\cyre}quation, under the boundary conditions of the first and second type},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {7--11},
     publisher = {mathdoc},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2011_1_a1/}
}
TY  - JOUR
AU  - S. A. Hosseiny Matikolai
TI  - On the anisotropic boundary value problem, connected with Helmholtze-Schr\"{o}dinger еquation, under the boundary conditions of the first and second type
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2011
SP  - 7
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2011_1_a1/
LA  - en
ID  - UZERU_2011_1_a1
ER  - 
%0 Journal Article
%A S. A. Hosseiny Matikolai
%T On the anisotropic boundary value problem, connected with Helmholtze-Schr\"{o}dinger еquation, under the boundary conditions of the first and second type
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2011
%P 7-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2011_1_a1/
%G en
%F UZERU_2011_1_a1
S. A. Hosseiny Matikolai. On the anisotropic boundary value problem, connected with Helmholtze-Schr\"{o}dinger еquation, under the boundary conditions of the first and second type. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2011), pp. 7-11. http://geodesic.mathdoc.fr/item/UZERU_2011_1_a1/

[1] S.A. Hosseiny Matikolai, A.H. Kamalyan, M.I. Karakhanyan, “On an Anisotropic Boundary Problem of Diffraction with First And Second Type Boundary Conditions”, Proceedings of the YSU. Physical Mathematical Sciences, 2010, no. 2, 12–15 | Zbl

[2] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka,, M., 1973. | MR

[3] F.O. Speck, “Mixed boundary value problems of the type of Sommerfeld's half-plane problem \v 104A”, Proc. of the Royal Soc. of Edinburg, 1986, 261–277 | DOI | MR | Zbl

[4] V.G. Daniel, “On the Solution of Two Coupled Wiener–Hopf Equations”, SIAM J. Appl. Math., 44 (1984), 667–680. | DOI | MR | Zbl

[5] F.O. Speck, “Sommerfeld diffraction problems with first and second kind boundary conditions”, SIAM J. Math. Anal,, 20 (1989), 396–407 | DOI | MR | Zbl

[6] A.E. Heins, “The Sommerfeld Half-Plane Problem Revisited: II The Factoring of a Matrix of Analytic Functions”, Math. Methods. Appl. Sci.,, 61 (1983), 527–528 | MR

[7] B. Noble, Methods Based on the Wiener-Hopf Techniques (for the Solution of Partial Differential Equations), London, New-York, Paris, Los Angeles, 1958 | MR