Independent pairs in free Burnside groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62
Voir la notice de l'article provenant de la source Math-Net.Ru
In this work we prove that for an arbitrary odd $n\geq1003$ there exist two words $u(x,y), v(x,y)$, almost every images of which in free Burnside group $B(m,n)$ are independent.
Keywords:
free Burnside group, independent element
Mots-clés : non-amenable group, monomorphism.
Mots-clés : non-amenable group, monomorphism.
@article{UZERU_2010_2_a9,
author = {A. S. Pahlevanyan},
title = {Independent pairs in free {Burnside} groups},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {58--62},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/}
}
A. S. Pahlevanyan. Independent pairs in free Burnside groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/