Independent pairs in free Burnside groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we prove that for an arbitrary odd $n\geq1003$ there exist two words $u(x,y), v(x,y)$, almost every images of which in free Burnside group $B(m,n)$ are independent.
Keywords: free Burnside group, independent element
Mots-clés : non-amenable group, monomorphism.
@article{UZERU_2010_2_a9,
     author = {A. S. Pahlevanyan},
     title = {Independent pairs in free {Burnside} groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--62},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/}
}
TY  - JOUR
AU  - A. S. Pahlevanyan
TI  - Independent pairs in free Burnside groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 58
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/
LA  - en
ID  - UZERU_2010_2_a9
ER  - 
%0 Journal Article
%A A. S. Pahlevanyan
%T Independent pairs in free Burnside groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 58-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/
%G en
%F UZERU_2010_2_a9
A. S. Pahlevanyan. Independent pairs in free Burnside groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/