Independent pairs in free Burnside groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we prove that for an arbitrary odd $n\geq1003$ there exist two words $u(x,y), v(x,y)$, almost every images of which in free Burnside group $B(m,n)$ are independent.
Keywords: free Burnside group, independent element
Mots-clés : non-amenable group, monomorphism.
@article{UZERU_2010_2_a9,
     author = {A. S. Pahlevanyan},
     title = {Independent pairs in free {Burnside} groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {58--62},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/}
}
TY  - JOUR
AU  - A. S. Pahlevanyan
TI  - Independent pairs in free Burnside groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 58
EP  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/
LA  - en
ID  - UZERU_2010_2_a9
ER  - 
%0 Journal Article
%A A. S. Pahlevanyan
%T Independent pairs in free Burnside groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 58-62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/
%G en
%F UZERU_2010_2_a9
A. S. Pahlevanyan. Independent pairs in free Burnside groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 58-62. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a9/

[1] S.I. Adian, The Burnside Problem and Identities in Groups, Ergeb. Math. Grenzgeb., 95, Springer–Verlag, Berlin–Heidelberg–New York, 1979 | MR

[2] Proc. Steklov Inst. Math., 112 (1971), 61–69 | MR | Zbl

[3] Math. USSR-Izv., 10:1 (1976), 181–199 | DOI | MR | Zbl

[4] Math. USSR-Izv., 19:2 (1982), 215–229 | DOI | MR | Zbl

[5] Izv. Math., 73:5 (2009), 861–892 | DOI | DOI | MR | Zbl

[6] J. Math. Sci., 166:6 (2010), 691–703 | DOI | MR | Zbl

[7] A.Yu. Ol'shanskii, “Self-Normalization of Free Subgroups in the Free Burnside Groups”, Groups, Rings, Lie and Hopf Algebras, ed. Y. Baturin, Kluwer AP, 2003, 179–187 | DOI | MR | Zbl

[8] S.V. Ivanov, “On subgroups of free Burnside groups of large odd exponent”, Illinois J. Math., 47:1-2 (2003), 299–304 | MR | Zbl

[9] D. Sonkin, “CEP-Subgroups of Free Burnside Groups of Large Odd Exponents”, Comm. Algebra, 31:10 (2003), 4687–4695 | DOI | MR | Zbl

[10] Math. Notes, 86:4 (2009), 457–462 | DOI | DOI | MR | Zbl | Zbl

[11] S.V. Ivanov, A.Yu. Ol'shanskii, “Some applications of graded diagrams in combinatorial group theory”, St. Andrews Group 89, v. 2, London Math. Soc. Lecture Note Ser., 160, Cambridge Univ. Press, Cambridge, 1991, 258–308 | MR

[12] Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[13] Math. USSR-Izv., 21:3 (1983), 425–434 | DOI | MR | Zbl

[14] G.N. Arzhantseva, J. Burillo, M. Lustig, L. Reeves, H. Short, E. Ventura, “Uniform non-amenability”, Adv. Math., 197:2 (2005), 499–522 | DOI | MR | Zbl

[15] D.V. Osin Uniform non-amenability of free Burnside groups, Arch. Math. (Basel), 88:5 (2007), 403–412 | DOI | MR | Zbl

[16] Math. Notes, 85:4 (2009), 496–502 | DOI | DOI | MR | Zbl | Zbl