An upper bound for the complexity of linearized coverings in a finite field
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 41-48

Voir la notice de l'article provenant de la source Math-Net.Ru

The minimal number of systems of linear equations with $n$ unknowns over a finite field $F_q$, such that the union of all solutions of the systems forms an exact cover for a given subset in $F_q^n$, is the complexity of a linearized covering. An upper bound for the complexity for “almost all” subsets in $F_q^n$ is presented.
@article{UZERU_2010_2_a6,
     author = {H. K. Nurijanyan},
     title = {An upper bound for the complexity of linearized coverings in a finite field},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {41--48},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/}
}
TY  - JOUR
AU  - H. K. Nurijanyan
TI  - An upper bound for the complexity of linearized coverings in a finite field
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 41
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/
LA  - en
ID  - UZERU_2010_2_a6
ER  - 
%0 Journal Article
%A H. K. Nurijanyan
%T An upper bound for the complexity of linearized coverings in a finite field
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 41-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/
%G en
%F UZERU_2010_2_a6
H. K. Nurijanyan. An upper bound for the complexity of linearized coverings in a finite field. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 41-48. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/