An upper bound for the complexity of linearized coverings in a finite field
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 41-48
Voir la notice de l'article provenant de la source Math-Net.Ru
The minimal number of systems of linear equations with $n$ unknowns over a finite field $F_q$, such that the union of all solutions of the systems forms an exact cover for a given subset in $F_q^n$, is the complexity of a linearized covering. An upper bound for the complexity for “almost all” subsets in $F_q^n$ is presented.
@article{UZERU_2010_2_a6,
author = {H. K. Nurijanyan},
title = {An upper bound for the complexity of linearized coverings in a finite field},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {41--48},
publisher = {mathdoc},
number = {2},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/}
}
TY - JOUR AU - H. K. Nurijanyan TI - An upper bound for the complexity of linearized coverings in a finite field JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2010 SP - 41 EP - 48 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/ LA - en ID - UZERU_2010_2_a6 ER -
%0 Journal Article %A H. K. Nurijanyan %T An upper bound for the complexity of linearized coverings in a finite field %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2010 %P 41-48 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/ %G en %F UZERU_2010_2_a6
H. K. Nurijanyan. An upper bound for the complexity of linearized coverings in a finite field. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 41-48. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a6/