On an anisotropic boundary problem of diffraction with first and second type boundary conditions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 12-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper solvability of a class of boundary problems associated with the anisotropic Helmholtz-Shrodinger equation in the upper and lower semiplanes of Sobolev spaces is studied. The first and second type boundary conditions are assumed to hold on the line $\ y=0$. Solvability of these boundary problems reduces to solvability of Riman-Hilbert boundary problem. The solvability analysis is based on the factorization problem of some matrix-function.
Keywords: Helmholtz-Shrodinger equation, factorization of matrix-functons.
@article{UZERU_2010_2_a1,
     author = {S. A. Hosseiny Matikolai and A. G. Kamalian and M. I. Karakhanyan},
     title = {On an anisotropic boundary problem of diffraction with first and second type boundary conditions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--15},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a1/}
}
TY  - JOUR
AU  - S. A. Hosseiny Matikolai
AU  - A. G. Kamalian
AU  - M. I. Karakhanyan
TI  - On an anisotropic boundary problem of diffraction with first and second type boundary conditions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 12
EP  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a1/
LA  - en
ID  - UZERU_2010_2_a1
ER  - 
%0 Journal Article
%A S. A. Hosseiny Matikolai
%A A. G. Kamalian
%A M. I. Karakhanyan
%T On an anisotropic boundary problem of diffraction with first and second type boundary conditions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 12-15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a1/
%G en
%F UZERU_2010_2_a1
S. A. Hosseiny Matikolai; A. G. Kamalian; M. I. Karakhanyan. On an anisotropic boundary problem of diffraction with first and second type boundary conditions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 12-15. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a1/

[1] G.I. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations, Nauka, M, 1973 | MR

[2] F.O. Speck, “Mixed boundary value problems of the type of Sommerfeld's half-plane problem”, Proc. of the Royal Soc. of Edinburgh, 104A (1986), 261–277 | DOI | MR | Zbl

[3] A.E. Heins, “The sommerfeld half-plane problem revisited, II the factoring of a matrix of analytic functions”, Math. Methods Appl. Sci., 5 (1983), 14–24 | DOI | MR

[4] A.D. Rawlins, “The Explicit Wiener-Hopf Factorisation of A Special Matrix”, Z. Angew. Math., Mech., 61 (1981), 527–528 | DOI | MR | Zbl

[5] V.G. Daniel, “On the Solution of Two Coupled Wiener–Hopf Equations”, SIAM J. Appl. Math., 44 (1984), 667–680 | DOI | MR | Zbl

[6] F.O. Speck, “Sommerfeld diffraction problems with first and second kind boundary conditions”, SIAM J. Math. Anal., 20 (1989), 396–407 | DOI | MR | Zbl

[7] N.I. Muskhelishvili, Singular Integral Equations, Nauka, M, 1968 | MR | Zbl

[8] F.D. Gakhov, Boundary Problems, Fizmatgiz, M, 1963

[9] G.S. Litvinchuk, I.M. Spitkovskii, Factorization of Measurable Matrix Functions, Akademie Verlag, Berlin, 1987 | MR

[10] K. Clancey, I. Gohberg, Factorization of Matrix Functions and Singular Integral Operators, v. 3, Operator Theory. Advanced and Appl., Birkhauser, Basel, 1981 | MR | Zbl