On a generalization of Taylor–Maclourin formula for classes of Dzrbashyan functions $C^{*\infty}_{\alpha}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper for any $\rho\geq1$ and an arbitrary increasing sequence of positive numbers $\{\lambda_j\}^{\infty}_0$, the systems of operators and functions are introduced: $\{L^{n/p}_{\infty}\}^{\infty}_0$, $\{\varphi_n(x)\}^{\infty}_0$, $x\in[0, +\infty)$; $L^{0/p}_{\infty}f\equiv f$, $L^{n/p}_{\infty}f\equiv\displaystyle\prod^{n-1}_{j=0}(D^{1/\rho}_{\infty}+\lambda_j)f$, $n\geq 1$, where $L^{1/p}_{\infty}f\equiv\dfrac{d}{dx}D^{\alpha}_{\infty} f$, $D^{-\alpha}_{\infty} f\equiv\dfrac{1}{\Gamma(\alpha)}\displaystyle\int_x^{\infty}(t-x)^{\alpha-1}f(t)dt$, $D^{n/\rho}_{\infty} f\equiv D^{1/\rho}_{\infty} D^{(n-1)/\rho}_{\infty}f(1-\alpha=1/\rho)$; $\varphi_0(x)=\exp(-\lambda^{\rho}_0x)$, $\varphi_n(x)=\displaystyle\sum_{k=0}^nC_k^{(n)}\exp(-\lambda^{\rho}_nx)$, $C_k^{(n)}=\left(\displaystyle\prod^n_{j=0,(j\neq k)}(\lambda_j-\lambda_k)\right)^{-1}.$ Some properties of these systems are investigated, as well as specific differential equations of fractional order are solved. Finally, for some classes of functions Taylor–McLaurens type formulas are obtained.
Keywords: Weil operators, Taylor–McLaurens type formulas.
@article{UZERU_2010_2_a0,
     author = {B. A. Sahakyan and G. S. Kocharyan},
     title = {On a generalization of {Taylor{\textendash}Maclourin} formula for classes of {Dzrbashyan} functions $C^{*\infty}_{\alpha}$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--11},
     publisher = {mathdoc},
     number = {2},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_2_a0/}
}
TY  - JOUR
AU  - B. A. Sahakyan
AU  - G. S. Kocharyan
TI  - On a generalization of Taylor–Maclourin formula for classes of Dzrbashyan functions $C^{*\infty}_{\alpha}$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 3
EP  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_2_a0/
LA  - en
ID  - UZERU_2010_2_a0
ER  - 
%0 Journal Article
%A B. A. Sahakyan
%A G. S. Kocharyan
%T On a generalization of Taylor–Maclourin formula for classes of Dzrbashyan functions $C^{*\infty}_{\alpha}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 3-11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_2_a0/
%G en
%F UZERU_2010_2_a0
B. A. Sahakyan; G. S. Kocharyan. On a generalization of Taylor–Maclourin formula for classes of Dzrbashyan functions $C^{*\infty}_{\alpha}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2010), pp. 3-11. http://geodesic.mathdoc.fr/item/UZERU_2010_2_a0/

[1] M.M. Dzhrbashyan, “Riman–Liuvill’s Generalized Operator and Some Applications”, Izv. AN Arm. SSR. Ser. Mat., 3:34 (1968), 171–248 (in Russian) | Zbl

[2] M.M. Dzhrbashyan, Integral Transforms and Representations of Functions in the Complex Domain, Nauka, M., 1966 (in Russian) | MR

[3] M.M. Dzhrbashyan, Nersesyan A.B., “Fractional Derivatives and the Cauchy Problem for Differential Equations of Fractional Order”, Izv. AN Armenian SSR. Matematica, 3:1 (1968) (in Russian) | MR