Vacuum fluctuations in cosmological models with compactified dimensions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 47-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study quantum effects of scalar fields in cosmological models of Friedman–Robertson–Walker with a power-low scale factor and spatial topology $R^p\times(S^1)^q$ . Recurrent formulae are obtained for positive-frequency Wightman function, vacuum expectation values of the field squared and energy density.
Keywords: cosmology, vacuum fluctuations, Kaluza–Klein theories.
@article{UZERU_2010_1_a7,
     author = {A. L. Mkhitaryan},
     title = {Vacuum fluctuations in cosmological models with compactified dimensions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {47--53},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_1_a7/}
}
TY  - JOUR
AU  - A. L. Mkhitaryan
TI  - Vacuum fluctuations in cosmological models with compactified dimensions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 47
EP  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_1_a7/
LA  - en
ID  - UZERU_2010_1_a7
ER  - 
%0 Journal Article
%A A. L. Mkhitaryan
%T Vacuum fluctuations in cosmological models with compactified dimensions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 47-53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_1_a7/
%G en
%F UZERU_2010_1_a7
A. L. Mkhitaryan. Vacuum fluctuations in cosmological models with compactified dimensions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 47-53. http://geodesic.mathdoc.fr/item/UZERU_2010_1_a7/

[1] B. McInnes, “Orbifold physics and de Sitter spacetime”, Nucl. Phys. B, 692 (2004), 270–300 | DOI | MR | Zbl

[2] A. Linde, “Creation of a compact topologically nontrivial inflationary universe”, JCAP, 10 (2004), 004 | DOI | MR

[3] A. De Oliveira-Costa, G.F. Smoot, A.A. Starobinsky, Can the lack of symmetry in the COBE/DMR maps constrain the topology of the universe?, Astrophys. J., 468 (1996), 457 | DOI

[4] J. Levin, “Topology and the cosmic microwave background”, Phys. Rept., 365 (2002), 251 | DOI | MR | Zbl

[5] N.J. Cornish, D.N. Spergel, G.D. Starkman, E. Komatsu, “Constraining the Topology of the Universe”, Phys. Rev. Lett., 92 (2004), 201302 | DOI | MR

[6] V.M. Mostepanenko, N.N. Trunov, The Casimir Effect and Its Applications, Clarendon, Oxford, 1997

[7] M. Bordag, U. Mohidden, V.M. Mostepanenko, “New developments in the Casimir effect”, Phys. Rept., 353:1–3 (2001), 1–201 | DOI | MR

[8] E. Elizalde, S.D. Odintsov, A. Romeo, A.A. Bytsenko, S. Zerbini, Zeta Regularization Techniques with Applications, World Scientific, Singapore, 1994 | MR | Zbl

[9] Saharian A.A., The Generalized Abel-Plana Formula. Applications to Bessel Functions and Casimir Effect, 2000, arXiv: hep-th/0002239v1

[10] N.D. Birrel, P.C.W. Davies, Quantum Fields in Curved Space, Cambridge University Press, Cambridge, 1982 | MR | Zbl

[11] E. Elizalde, “Uses of zeta regularization in QFT with boundary conditions: a cosmo-topological Casimir effect”, J. Phys. A, 39 (2006), 6299 | DOI | MR | Zbl

[12] A.A. Saharian, “Surface Casimir densities and induced cosmological constant in higher dimensional braneworlds”, Phys. Rev. D, 74 (2006), 124009 | DOI

[13] Y.B. Zeldovich, A.A. Starobinsky, “Quantum Creation of a Universe with Nontrivial Topology”, Sov. Astron. Lett., 10 (1984), 135

[14] Yu.P. Goncharov, A.A. Bytsenko, “The supersymmetric Casimir effect and quantum creation of the universe with nontrivial topology”, Phys. Lett. B, 160 (1985), 385 | DOI | MR

[15] Yu.P. Goncharov, A.A. Bytsenko, “Casimir effect in supergravity theories and the quantum birth of the Universe with non-trivial topology”, Class. Quant. Grav., 4 (1987), 555 | DOI | MR | Zbl

[16] A.A. Saharian, M.R. Setare, “Casimir effect in de Sitter space–time with compactified dimension”, Phys. Lett. B, 659 (2008), 367 | DOI | MR | Zbl

[17] Bellucci S., A.A. Saharian, “Wightman function and vacuum densities in de Sitter spacetime with toroidally compactified dimensions”, Phys. Rev. D, 77 (2008), 12410 | DOI | MR

[18] A.A. Saharian, “The fermionic Casimir effect in toroidally compactified de Sitter spacetime”, Class. Quant. Grav., 25 (2008), 165012 | DOI | MR | Zbl

[19] E.R. Bezerra de Mello, A.A. Saharian, “Fermionic vacuum densities in higher-dimensional de Sitter spacetime”, JHEP, 12 (2008), 81 | MR

[20] A.L. Mkhitaryan, “Vacuum fluctuations in cosmological models with compact dimensions”, Astrophysics, 52:4 (2009), 598 | DOI

[21] A.A. Saharian, “Energy-momentum tensor for a scalar field on manifolds with boundaries”, Phys. Rev. D, 69 (2004), 85005 | DOI | MR