Neumann problem for fourth order degenerate ordinary differential equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 22-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the Neumann problem for the equation $Lu\equiv(t^{\alpha}u'')''+au=f$, where $0\leqslant\alpha\leqslant4$, $t\in[0,b]$, $f\in L_2(0,b)$ is considered. Firstly, the weighted Sobolev space $W^2_{\alpha}$ and generalized solution for the above-mentioned equation are defined. Then, the existence and uniqueness of the generalized solution is studied, as well as the spectrum and the domain of corresponding operator are described.
Keywords: Neumann problem, weighted Sobolev spaces, generalized solution, spectrum of linear operators.
@article{UZERU_2010_1_a3,
     author = {L. P. Tepoyan and Kalvand Daryoush},
     title = {Neumann problem for fourth order degenerate ordinary differential equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--26},
     publisher = {mathdoc},
     number = {1},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2010_1_a3/}
}
TY  - JOUR
AU  - L. P. Tepoyan
AU  - Kalvand Daryoush
TI  - Neumann problem for fourth order degenerate ordinary differential equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2010
SP  - 22
EP  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2010_1_a3/
LA  - en
ID  - UZERU_2010_1_a3
ER  - 
%0 Journal Article
%A L. P. Tepoyan
%A Kalvand Daryoush
%T Neumann problem for fourth order degenerate ordinary differential equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2010
%P 22-26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2010_1_a3/
%G en
%F UZERU_2010_1_a3
L. P. Tepoyan; Kalvand Daryoush. Neumann problem for fourth order degenerate ordinary differential equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2010), pp. 22-26. http://geodesic.mathdoc.fr/item/UZERU_2010_1_a3/

[1] Math. USSR-Sb., 43:3 (1982), 287–298 | DOI | MR | Zbl | Zbl

[2] Amer. Math. Soc., 1988, no. 8, 1469–1470 | MR | Zbl

[3] L.P. Tepoyan, “On a Degenerate Differential-Operator Equation of Higher Order”, Izv. NAN Armenii. Matematika, 34:5 (1999), 48–56 | MR | Zbl

[4] L.D. Kudryavtzev, “On Equivalent Norms in the Weighted Spaces”, Trudy Mat. Inst. AN SSSR, 170, 1984, 161–190 (in Russian) | MR

[5] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge University Press, Cambridge, 1964 | MR

[6] R.E. Showalter, “Hilbert Space Methods for Partial Differential Equations”, Electron. J. Diff. Eqns, 1994 http://www.emis.de/journals/EJDE/Monographs/01/abstr.html | MR

[7] A.A. Dezin, Partial Degenerate Equations (An Introduction to a General Theory of Linear Boundary Vaiue Problems), Springer, 1987 | MR