Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2009_3_a2, author = {R. Lotfikar}, title = {Finite-element method for the model pseudoparabolic equation}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {22--25}, publisher = {mathdoc}, number = {3}, year = {2009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/} }
TY - JOUR AU - R. Lotfikar TI - Finite-element method for the model pseudoparabolic equation JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 22 EP - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/ LA - en ID - UZERU_2009_3_a2 ER -
R. Lotfikar. Finite-element method for the model pseudoparabolic equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 22-25. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/
[1] R. A. Aleksandryan, “Spectral properties of operators arising from systems of differential equations of Sobolev type”, Tr. Mosk. Mat. Obs., 9, 1960, 455–505 (in Russian) | MR | Zbl
[2] G.S. Hakobyan, R.L. Shakhbaghyan, “Mixed boundary value problem for a high-order quasilinear degenerate evolutionary equations”, Izv. NAN Armenii, Matematika (Journal of contemporary Mathematical Analysis, NAS RA), 31:3 (1996), 5–29 (in Russian) | MR
[3] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 1997 | MR | Zbl
[4] Kh. Gaevskii, K. Greger, K. Zakharis, Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian) | MR
[5] H.A. Mamikonyan, “Initial boundary value problem for Sobolev type nonlinear equations”, Uch. Zapiski EGU(Proceedings of the YSU), 2006, no. 2, 33–40 (in Russian)
[6] R. Lotfikar, “Method of Galyorkin for nonlinear Sobolev type equations”, Uch. Zapiski EGU(Proceedings of the YSU), 2008, no. 3, 10–15
[7] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2000 | MR
[8] D. Braess, Finite Elements, Cambridge, 2001 | MR