Finite-element method for the model pseudoparabolic equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the construction of the approximate solution to the initialboundary value problem for the pseudoparabolic equation using finite-element method is considered. It is proved that the costructed sequence converges to the exact solution and error estimate is obtained.
Keywords: finite-element method, monotone operators.
Mots-clés : pseudoparabolic equations
@article{UZERU_2009_3_a2,
     author = {R. Lotfikar},
     title = {Finite-element method for the model pseudoparabolic equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--25},
     publisher = {mathdoc},
     number = {3},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/}
}
TY  - JOUR
AU  - R. Lotfikar
TI  - Finite-element method for the model pseudoparabolic equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 22
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/
LA  - en
ID  - UZERU_2009_3_a2
ER  - 
%0 Journal Article
%A R. Lotfikar
%T Finite-element method for the model pseudoparabolic equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 22-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/
%G en
%F UZERU_2009_3_a2
R. Lotfikar. Finite-element method for the model pseudoparabolic equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2009), pp. 22-25. http://geodesic.mathdoc.fr/item/UZERU_2009_3_a2/

[1] R. A. Aleksandryan, “Spectral properties of operators arising from systems of differential equations of Sobolev type”, Tr. Mosk. Mat. Obs., 9, 1960, 455–505 (in Russian) | MR | Zbl

[2] G.S. Hakobyan, R.L. Shakhbaghyan, “Mixed boundary value problem for a high-order quasilinear degenerate evolutionary equations”, Izv. NAN Armenii, Matematika (Journal of contemporary Mathematical Analysis, NAS RA), 31:3 (1996), 5–29 (in Russian) | MR

[3] R.E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 1997 | MR | Zbl

[4] Kh. Gaevskii, K. Greger, K. Zakharis, Nonlinear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian) | MR

[5] H.A. Mamikonyan, “Initial boundary value problem for Sobolev type nonlinear equations”, Uch. Zapiski EGU(Proceedings of the YSU), 2006, no. 2, 33–40 (in Russian)

[6] R. Lotfikar, “Method of Galyorkin for nonlinear Sobolev type equations”, Uch. Zapiski EGU(Proceedings of the YSU), 2008, no. 3, 10–15

[7] A. Quarteroni, R. Sacco, F. Saleri, Numerical Mathematics, Springer, 2000 | MR

[8] D. Braess, Finite Elements, Cambridge, 2001 | MR