Infinite order automorphisms of free periodic groups of sufficiently large exponent
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 38-42

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct infinite order automorphisms of free periodic groups $B(m,n)$ of sufficiently large period $n$ with $m\geq2$ generators. From the obtained results it follows that the quotient group of the group $\mathrm{Aut}(B(m,n))$ with respect to normal subgroup of inner automorphisms is infinite.
Keywords: free periodic groups, Burnside groups, group automorphisms.
@article{UZERU_2009_2_a6,
     author = {A. S. Pahlevanyan},
     title = {Infinite order automorphisms of free periodic groups of sufficiently large exponent},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {38--42},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/}
}
TY  - JOUR
AU  - A. S. Pahlevanyan
TI  - Infinite order automorphisms of free periodic groups of sufficiently large exponent
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 38
EP  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/
LA  - en
ID  - UZERU_2009_2_a6
ER  - 
%0 Journal Article
%A A. S. Pahlevanyan
%T Infinite order automorphisms of free periodic groups of sufficiently large exponent
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 38-42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/
%G en
%F UZERU_2009_2_a6
A. S. Pahlevanyan. Infinite order automorphisms of free periodic groups of sufficiently large exponent. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 38-42. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/