Infinite order automorphisms of free periodic groups of sufficiently large exponent
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 38-42
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we construct infinite order automorphisms of free periodic groups $B(m,n)$ of sufficiently large period $n$ with $m\geq2$ generators. From the obtained results it follows that the quotient group of the group $\mathrm{Aut}(B(m,n))$ with respect to normal subgroup of inner automorphisms is infinite.
Keywords:
free periodic groups, Burnside groups, group automorphisms.
@article{UZERU_2009_2_a6,
author = {A. S. Pahlevanyan},
title = {Infinite order automorphisms of free periodic groups of sufficiently large exponent},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {38--42},
year = {2009},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/}
}
TY - JOUR AU - A. S. Pahlevanyan TI - Infinite order automorphisms of free periodic groups of sufficiently large exponent JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2009 SP - 38 EP - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/ LA - en ID - UZERU_2009_2_a6 ER -
%0 Journal Article %A A. S. Pahlevanyan %T Infinite order automorphisms of free periodic groups of sufficiently large exponent %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2009 %P 38-42 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/ %G en %F UZERU_2009_2_a6
A. S. Pahlevanyan. Infinite order automorphisms of free periodic groups of sufficiently large exponent. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 38-42. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a6/
[1] Kourovskaya Tetrad’: Unsolved Problems in Group Theory, Novosibirsk, 2006 (in Russian)
[2] E.A. Cherepanov, “Normal automorphisms of free Burnside groups of large odd exponents”, J. Algebra Comput., 16:5 (2006), 839–847 | DOI | MR | Zbl
[3] E.A. Cherepanov, “Free semigroup in the group of automorphisms of the free Burnside group”, Communications in Algebra, 33:2 (2005), 539–547 | DOI | MR | Zbl
[4] S.I. Adian, The Burnside Problem and Identities in Groups, Nauka, M., 1975 (in Russian) | MR