Bivariate interpolation with integrals
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 26-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bivariate interpolation problem, where the interpolation parameters are integrals over bounded regions, is considered in this paper. H. Hakopian posed a hypothesis for this problem in the case, when regions are obtained from intersection of lines in general position [2]. Till now the hypothesis is proved for polynomials of degree $\leq1$. In this paper we bring a new proof. Meanwhile we solve the problem in more general setting – in the case of arbitrary regions.
Keywords: correctness, bivariate
Mots-clés : centroid, interpolation.
@article{UZERU_2009_2_a4,
     author = {G. A. Ktryan},
     title = {Bivariate interpolation with integrals},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {26--31},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a4/}
}
TY  - JOUR
AU  - G. A. Ktryan
TI  - Bivariate interpolation with integrals
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 26
EP  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a4/
LA  - en
ID  - UZERU_2009_2_a4
ER  - 
%0 Journal Article
%A G. A. Ktryan
%T Bivariate interpolation with integrals
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 26-31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a4/
%G en
%F UZERU_2009_2_a4
G. A. Ktryan. Bivariate interpolation with integrals. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 26-31. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a4/

[1] B.Bojanov, H. Hakopian, A. Sahakian, Spline Functions and Multivariate Interpolation, Kluwer Academic Publishers, 1993 | MR

[2] Kh. Rahsepar Fard, “An approach to interpolation by integration”, Proceedings of the YSU, Physics Mathematics, 2009, no. 2, 21–25