An approach to interpolation by integration
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 21-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the correctness of Lagrange bivariate interpolation problem, where interpolation parameters are integrals over certain bounded plane regions. Here we study the case of bivariate polynomials of degree not exceeding one.
Keywords: bivariate, mean-value
Mots-clés : Lagrange, interpolation.
@article{UZERU_2009_2_a3,
     author = {Kh. Rahsepar Fard},
     title = {An approach to interpolation by integration},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {21--25},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a3/}
}
TY  - JOUR
AU  - Kh. Rahsepar Fard
TI  - An approach to interpolation by integration
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 21
EP  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a3/
LA  - en
ID  - UZERU_2009_2_a3
ER  - 
%0 Journal Article
%A Kh. Rahsepar Fard
%T An approach to interpolation by integration
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 21-25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a3/
%G en
%F UZERU_2009_2_a3
Kh. Rahsepar Fard. An approach to interpolation by integration. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 21-25. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a3/

[1] Hakopian H.A., “Multivariate Interpolation II of Lagrange and Hermite Type”, Studia Mathematica, 80, 1984, 77–88 | MR | Zbl