Initial boundary value problem for some class of non-linear degenerate pseudoparabolic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 16-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper studies existence and uniqueness of solution of initial boundary value problems for the non-linear degenerate pseudoparabolic equations. It is proved that if operators $L$ and $M$ satisfy certain conditions, the problem has a unique solution in corresponding functional spaces.
Keywords: non-linear operator, monotone operator.
Mots-clés : pseudoparabolic
@article{UZERU_2009_2_a2,
     author = {G. S. Hakobyan and R. Lotfikar},
     title = {Initial boundary value problem for some class of non-linear degenerate pseudoparabolic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--20},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a2/}
}
TY  - JOUR
AU  - G. S. Hakobyan
AU  - R. Lotfikar
TI  - Initial boundary value problem for some class of non-linear degenerate pseudoparabolic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 16
EP  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a2/
LA  - en
ID  - UZERU_2009_2_a2
ER  - 
%0 Journal Article
%A G. S. Hakobyan
%A R. Lotfikar
%T Initial boundary value problem for some class of non-linear degenerate pseudoparabolic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 16-20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a2/
%G en
%F UZERU_2009_2_a2
G. S. Hakobyan; R. Lotfikar. Initial boundary value problem for some class of non-linear degenerate pseudoparabolic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 16-20. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a2/

[1] S. L. Sobolev, “On a new problem of mathematical physics”, Izv. Akad. Nauk SSSR Ser. Mat., 18:1 (1954), 3–50 (in Russian) | MR | Zbl

[2] R.A. Aleksandrian, Ju.M. Berezanskii, V.A. Il’in, A.G. Kostjucenko et al, Partial Differential Equations, v. 105, Amer. Math. Soc. Transl. ser. 2, 1976 | DOI

[3] R.E. Showalter, “Hilbert Space Methods for Partial Differential Equations”, Electronic Journal of Differential Equations, 1994, Monography 01 | MR

[4] T.W. Ting, “Parabolic and pseudo-parabolic partial differential equations”, J. Math. Soc. Japan, 21:3 (1969), 440–453 | DOI | MR | Zbl

[5] Kh. Gaevski, K. Greger, K. Zakharis, Non-linear Operator Equations and Operator Differential Equations, Mir, M., 1978 (in Russian)

[6] G.S. Hakobyan, R.L. Shakhbagyan, “Initial-boundary value problem for Sobolev type nonlinear degenerate systems”, Izvestia NAN RA. Mathematica, 30 (1995), 17–32 (in Russian) | MR

[7] G.S. Hakobyan, “On initial-boundary problems for degenerative Sobolev-type equations”, Uchenie zapiski YSU (Proceedings of the YSU), 1986, no. 1(161), 20–27 (in Russian)

[8] S.G. Mikhlin, Variational Methods in Mathematical Physics, Nauka, M., 1970 (in Russian) | MR

[9] J.L. Lions, Some Methods on the Solution of Non-linear Boundary Value Problems, Mir, M., 1972 (in Russian)