A remark on asymptotic property of commutators
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the asymptotic variance of the classical Von-Neiman–Fuglede Theorem for elements of the complex Banach algebra is extended.
Keywords: Banach algebra, hermitian, commutator.
Mots-clés : normal element
@article{UZERU_2009_2_a11,
     author = {I. M. Karakhanyan and M. I. Karakhanyan},
     title = {A remark on asymptotic property of commutators},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {63--66},
     publisher = {mathdoc},
     number = {2},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_2_a11/}
}
TY  - JOUR
AU  - I. M. Karakhanyan
AU  - M. I. Karakhanyan
TI  - A remark on asymptotic property of commutators
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 63
EP  - 66
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_2_a11/
LA  - en
ID  - UZERU_2009_2_a11
ER  - 
%0 Journal Article
%A I. M. Karakhanyan
%A M. I. Karakhanyan
%T A remark on asymptotic property of commutators
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 63-66
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_2_a11/
%G en
%F UZERU_2009_2_a11
I. M. Karakhanyan; M. I. Karakhanyan. A remark on asymptotic property of commutators. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2009), pp. 63-66. http://geodesic.mathdoc.fr/item/UZERU_2009_2_a11/

[1] Math. Notes, 22:2 (1977), 591–596 | DOI | MR | Zbl

[2] St. Petersburg Math. J., 5:4 (1994), 733–744 | MR | Zbl

[3] M.I. Karakhanyan, “Some Remarks on General Commutators Theorems”, Izv. NAN Armenii. Matematika, 42:3 (2007), 49–54 (in Russian) | MR | Zbl

[4] Funct. Anal. Appl., 39:4 (2005), 311–313 | DOI | DOI | MR | Zbl