On distribution’s constant slowly varying component
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 20-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present report it is proved that for a priori given numbers $\rho\in(1,+\infty)$ and $L\in R^+=(0, +\infty)$ there is a distribution $\big\{p_n\big\}_1^{\infty}$ with the following properties: $\big\{p_n\big\}_1^{\infty}$ varies regularly as $n\to +\infty$ with exponent $(-\rho)$, exhibits the constant slowly varying component $L$, and $\big\{\lg p_n\big\}_1^{\infty}$ is downward convex.
Keywords: regular variation, constant slowly varying component.
Mots-clés : distribution
@article{UZERU_2009_1_a3,
     author = {G. P. Avagyan},
     title = {On distribution{\textquoteright}s constant slowly varying component},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--23},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a3/}
}
TY  - JOUR
AU  - G. P. Avagyan
TI  - On distribution’s constant slowly varying component
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 20
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_1_a3/
LA  - en
ID  - UZERU_2009_1_a3
ER  - 
%0 Journal Article
%A G. P. Avagyan
%T On distribution’s constant slowly varying component
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 20-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_1_a3/
%G en
%F UZERU_2009_1_a3
G. P. Avagyan. On distribution’s constant slowly varying component. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 20-23. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a3/

[1] E. Seneta, Regularly varying functions, Nauka, M., 1985 (in Russian) | MR | Zbl

[2] A.G. Arakelyan, Stability of frequency distributions in biomolecular models, Ph.D. Thesis, Yerevan State University, Yerevan, 2007 (in Russian)

[3] S. Yakovlev, “On the Structure of Hypergeometric Distributions”, Doklady NAN RA, 108:4 (2008), 294–300 | MR