On Euler type equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 16-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper an Euler type equation is considered and it is proved that for $\alpha\in[0,1)\big(\alpha\in(2n-1,2n]\big)$ the characteristic polynomial has $2n$ real roots. For other values of $\alpha$ the issue concerning the number of the real roots of this polynomial is investigated.
Keywords: Hardy’s inequality, oscillation problems, characteristic polynomial.
Mots-clés : Euler type equation
@article{UZERU_2009_1_a2,
     author = {S.A.Osipova and L. P. Tepoyan},
     title = {On {Euler} type equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--19},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a2/}
}
TY  - JOUR
AU  - S.A.Osipova
AU  - L. P. Tepoyan
TI  - On Euler type equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 16
EP  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_1_a2/
LA  - en
ID  - UZERU_2009_1_a2
ER  - 
%0 Journal Article
%A S.A.Osipova
%A L. P. Tepoyan
%T On Euler type equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 16-19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_1_a2/
%G en
%F UZERU_2009_1_a2
S.A.Osipova; L. P. Tepoyan. On Euler type equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 16-19. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a2/

[1] G.H. Hardy, J.E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1964.

[2] L.P. Tepoyan, “On a Degenerate Differential-Operator Equation of Higher Order”, Izvestiya Natsionalnoi Akademii Nauk Armenii. Matematika, 38:5 (2003), 48–56 (in Russian) | MR

[3] O. Dosly, S. Fisnarova, “Oscillation and nonoscillation of solutions to even order self-adjoint differential equations”, Electronic Journal of Differential Equations, 115 (2003), 1–21 | MR