Two side estimates for the double obstacle problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 8-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two obstacle problem in abstract form is considered in this paper. We prove two side estimates for the solution of this problem.
Keywords: double obstacle problem, two side estimates, Lewy–Stampacchia inequalities, $T$-monotonicity.
@article{UZERU_2009_1_a1,
     author = {R. R. Teymurazyan},
     title = {Two side estimates for the double obstacle problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--15},
     publisher = {mathdoc},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/}
}
TY  - JOUR
AU  - R. R. Teymurazyan
TI  - Two side estimates for the double obstacle problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2009
SP  - 8
EP  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/
LA  - en
ID  - UZERU_2009_1_a1
ER  - 
%0 Journal Article
%A R. R. Teymurazyan
%T Two side estimates for the double obstacle problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2009
%P 8-15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/
%G en
%F UZERU_2009_1_a1
R. R. Teymurazyan. Two side estimates for the double obstacle problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 8-15. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/

[1] J.F. Rodrigues, “Obstacle Problems in Mathematical Physics”, North-Holland Mathematics Studies, Notas de Matemática, 134, 1987 | MR | Zbl

[2] U. Mosco, “Implicit Variational Problems and Quasi Variational Inequalities”, Lecture notes in Mathematics, 543, Springer Verlag, Bruxells, 1976, 83–156 | DOI | MR

[3] W. Littman, G. Stampacchia, H. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 43–77. | MR | Zbl

[4] H. Schaeffer, Topological vector spaces, Mac-Millan ed., New York, 1966 | MR

[5] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineares, Dunod and Gauthiers-Cillard ed., Paris, 1969 | MR