Two side estimates for the double obstacle problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 8-15
Cet article a éte moissonné depuis la source Math-Net.Ru
Two obstacle problem in abstract form is considered in this paper. We prove two side estimates for the solution of this problem.
Keywords:
double obstacle problem, two side estimates, Lewy–Stampacchia inequalities, $T$-monotonicity.
@article{UZERU_2009_1_a1,
author = {R. R. Teymurazyan},
title = {Two side estimates for the double obstacle problem},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {8--15},
year = {2009},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/}
}
R. R. Teymurazyan. Two side estimates for the double obstacle problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2009), pp. 8-15. http://geodesic.mathdoc.fr/item/UZERU_2009_1_a1/
[1] J.F. Rodrigues, “Obstacle Problems in Mathematical Physics”, North-Holland Mathematics Studies, Notas de Matemática, 134, 1987 | MR | Zbl
[2] U. Mosco, “Implicit Variational Problems and Quasi Variational Inequalities”, Lecture notes in Mathematics, 543, Springer Verlag, Bruxells, 1976, 83–156 | DOI | MR
[3] W. Littman, G. Stampacchia, H. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Sup. Pisa, 17 (1963), 43–77. | MR | Zbl
[4] H. Schaeffer, Topological vector spaces, Mac-Millan ed., New York, 1966 | MR
[5] J.L. Lions, Quelques methodes de resolution des problemes aux limites non lineares, Dunod and Gauthiers-Cillard ed., Paris, 1969 | MR