About a class of contact problems for the elastic half-plane and the infinite plate which are strengthened by partially glued heterogeneous elastic stringers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 49-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work observes a class of contact problems for elastic half-plane and the infinite plate which along the length of the line $y=0$ in the plane $x0y$ (for the plate $x0y$ its average plane) is strengthened by heterogeneous elastic stringers (overlays) which consist of two semi-infinite pieces and one separated finite piece with other elastic characteristics. It is supposed that contact interaction in semiinfinite parts is realized by a thin layer of glue (other physicomechanical characteristics) and stringers are deformed under the action of horizontal forces. Using generalized Fourier transforms the determinational problem of contact stresses is reduced to the system of singular integral equations within the finite intervals with certain boundary conditions. Its solution is constructed using Chebishev polynomials unknown coefficents of which are received from the quasiperfectly regular infinite systems of the linear algebraic equations. Particular cases are obsereved and the character of the change contact stresses are illustrated in different contact parts. Particulary solutions by homogeneous elastic stringers are obtained.
@article{UZERU_2008_3_a7,
     author = {A. V. Kerobyan},
     title = {About a class of contact problems for the elastic half-plane and the infinite plate which are strengthened by partially glued heterogeneous elastic stringers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {49--58},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a7/}
}
TY  - JOUR
AU  - A. V. Kerobyan
TI  - About a class of contact problems for the elastic half-plane and the infinite plate which are strengthened by partially glued heterogeneous elastic stringers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 49
EP  - 58
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_3_a7/
LA  - ru
ID  - UZERU_2008_3_a7
ER  - 
%0 Journal Article
%A A. V. Kerobyan
%T About a class of contact problems for the elastic half-plane and the infinite plate which are strengthened by partially glued heterogeneous elastic stringers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 49-58
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_3_a7/
%G ru
%F UZERU_2008_3_a7
A. V. Kerobyan. About a class of contact problems for the elastic half-plane and the infinite plate which are strengthened by partially glued heterogeneous elastic stringers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 49-58. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a7/

[1] A. V. Keropyan, “Kontaktnye zadachi dlya uprugoi poluploskosti i beskonechnoi plastiny, usilennykh chastichno skleennym kusochno-odnorodnym stringerom”, Aktualnye problemy mekhaniki sploshnoi sredy, Izd-vo ErGUAS, Er., 2007, 531 pp.

[2] E. Kh. Grigoryan, B.A. Meltonyan, “Ob odnoi zadache dlya uprugoi poluploskosti, ukreplennoi na svoei granitse uprugimi nakladkami”, Uch. zapiski EGU, 1984, no. 1, 46-51 | Zbl

[3] A. V. Keropyan, “Kontaktnye zadachi dlya uprugoi poluploskosti i beskonechnoi plastiny, usilennoi chastichno skleennymi stringerami”, Uchenye zapiski EGU, 2007, no. 2, 35–44

[4] A. V. Keropyan, “Reshenie kontaktnykh zadach dlya uprugoi poluploskosti i beskonechnoi plastiny, kotorye usileny chastichno skleennymi raznorodnymi stringerami”, Izv. NAN Armenii. Mekhanika, 2008, no. 1, 37–47

[5] E. Kh. Grigoryan, A. V. Keropyan, S.S. Shaginyan, “Kontaktnaya zadacha dlya beskonechnoi plastiny s dvumya konechnymi stringerami, odin iz kotorykh skleen s nei, a drugoi nakhoditsya v idealnom kontakte”, Izv. NAN Armenii. Mekhanika, 2002, no. 2, 14–23

[6] E. Kh. Grigoryan, A. V. Keropyan, V. S. Sarkisyan, “Kontaktnaya zadacha dlya uprugoi poluploskosti, granitsa kotoroi usilena skleennymi s nei polubeskonechnymi nakladkami”, Izv. RAN, MTT, 1992, no. 3, 180–184

[7] E. Kh. Grigoryan, “Ob odnom effektivnom metode resheniya odnogo klassa smeshannykh zadach teorii uprugosti”, Uchenye zapiski EGU, 1979, no. 2, 62–71

[8] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 415 pp.

[9] N. Kh. Arutyunyan, S. M. Mkhitaryan, “Nekotorye kontaktnye zadachi dlya poluprostranstva, usilennogo uprugimi nakladkami”, PMM, 36:5 (1972), 825–831

[10] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.