On parastrophes of abelian invertible algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 39-43
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper we have proved that parastrophes of the abelian invertible algebras are also abelian, in particular every abelian (medial) quasigroup satisfies the abelian hyperidentity.
@article{UZERU_2008_3_a5,
author = {S. S. Davidov},
title = {On parastrophes of abelian invertible algebras},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {39--43},
year = {2008},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a5/}
}
S. S. Davidov. On parastrophes of abelian invertible algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 39-43. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a5/
[1] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl
[2] J. Jezek, T. Kepka, Medial Groupoids, Praha, 1983 | MR
[3] A. G. Kurosh, Obschaya algebra, Nauka, M., 1974 | MR
[4] A.B. Romanowska, J.D.H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl
[5] J.D.H. Smith, “Entropy, character theory and centrality of finite quasigroups”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 435–443 | DOI | MR | Zbl
[6] Yu. M. Movsisyan, Vvedenie v teoriyu algebr so sverkhtozhdestvami, EGU, Er., 1986 | MR
[7] Yu. M. Movsisyan, “Hyperidentities and hypervarieties”, Scientiae Mathematicae Japonicae, 54:3 (2001), 595–640 | MR | Zbl
[8] Ya. Atsel , Zh. Dombr, Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003