Noethericity of semi-elliptical operator with constant coefficients in the range
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 16-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

The current thesis describes the noethericity of the linear differential semielliptical operator with constant coefficients in the range. It’s proved, that in order the operator to be noetherian it is necessary and sufficient for it to be semielliptical. In particular it is proved that the index of the semi-elliptical operator with constant coefficients in the range is equal to zero.
@article{UZERU_2008_3_a2,
     author = {G. A. Karapetyan and A. A. Darbinyan},
     title = {Noethericity of semi-elliptical operator with constant coefficients in the range},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--24},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a2/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - A. A. Darbinyan
TI  - Noethericity of semi-elliptical operator with constant coefficients in the range
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 16
EP  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_3_a2/
LA  - ru
ID  - UZERU_2008_3_a2
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A A. A. Darbinyan
%T Noethericity of semi-elliptical operator with constant coefficients in the range
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 16-24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_3_a2/
%G ru
%F UZERU_2008_3_a2
G. A. Karapetyan; A. A. Darbinyan. Noethericity of semi-elliptical operator with constant coefficients in the range. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 16-24. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a2/

[1] A. I. Volpert, “Ob indekse i normalnoi razreshimosti granichnykh zadach dlya ellipticheskikh sistem differentsialnykh uravnenii na ploskosti”, Tr. MMO, 10, GIFML, M., 1961, 41–87 | MR | Zbl

[2] Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl

[3] L. A. Bagirov, “Elliptic equations in unbounded domains”, Math. USSR-Sb., 15:1 (1971), 121–140 | DOI | MR | Zbl

[4] G. A. Karapetyan, A. A. Darbinyan, Vestnik RAU, 2006, Godichnaya nauchnaya konferentsiya, 20–24

[5] Karapetyan G.A., Darbinyan A.A., “Ob indekse poluellipticheskogo operatora v $\mathrm{Irn}$”, Izv. NAN Armenii. Matematika, 42:5 (2007), 33–50 | MR | Zbl

[6] S. M. Nikolskii, “Variatsionnaya zadacha”, Matem. sb., 62(104):1 (1963), 53–75 | MR | Zbl

[7] O. V. Besov, V. P. Ilin, S.M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1977

[8] Z. Presdorf, Nekotorye klassy singulyarnykh uravnennyi, Mir, M., 1979

[9] R.T. Seeley, “The index of elliptic systems of singular integral operators”, Journal of Math. Analysis and App., 7 (1963), 289–309 | MR | Zbl

[10] I. Ts. Gokhberg, M. G. Krein, “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, UMN, 12:2(74) (1957), 43–118 | MR | Zbl