Method of Galyorkin for nonlinear Sobolev type equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 10-15

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the following initial boundary value problem is considered: $$\left\{\begin{array}{l} L\left(\frac{\partial u(t,x)}{\partial t}\right)+Mu(t,x)=f(t,x),\\ u(0,x)=u_0(x),\\ D^{\gamma}u\Big|_{\tilde A}=0, |\gamma|,\end{array}\right.$$ $L$ and $M$ are nonlinear differential operators. It is proved that if $L$ and $M$ satisfy to some conditions, then the sequence constructed by solutions of Galyorkin’s equations for this problem is convergence to the week solution of the problem
@article{UZERU_2008_3_a1,
     author = {R. Lotfikar},
     title = {Method of {Galyorkin} for nonlinear {Sobolev} type equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {10--15},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/}
}
TY  - JOUR
AU  - R. Lotfikar
TI  - Method of Galyorkin for nonlinear Sobolev type equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 10
EP  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/
LA  - ru
ID  - UZERU_2008_3_a1
ER  - 
%0 Journal Article
%A R. Lotfikar
%T Method of Galyorkin for nonlinear Sobolev type equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 10-15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/
%G ru
%F UZERU_2008_3_a1
R. Lotfikar. Method of Galyorkin for nonlinear Sobolev type equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 10-15. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/