Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2008_3_a1, author = {R. Lotfikar}, title = {Method of {Galyorkin} for nonlinear {Sobolev} type equations}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {10--15}, publisher = {mathdoc}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/} }
TY - JOUR AU - R. Lotfikar TI - Method of Galyorkin for nonlinear Sobolev type equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2008 SP - 10 EP - 15 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/ LA - ru ID - UZERU_2008_3_a1 ER -
R. Lotfikar. Method of Galyorkin for nonlinear Sobolev type equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 10-15. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a1/
[1] R. A. Aleksandryan, “Spektralnye svoistva operatorov, porozhdennykh sistemami differentsialnykh uravnenii tipa S. L. Soboleva”, Tr. MMO, 9, GIFML, M., 1960, 455–505 | MR | Zbl
[2] S. A. Galpern, “Zadacha Koshi dlya obschikh sistem lineinykh uravnenii s chastnymi proizvodnymi”, Tr. MMO, 9, GIFML, M., 1960, 401–423 | MR | Zbl
[3] R. A. Aleksandryan, Yu. M. Berezanskii, V. A. Ilin, A.G. Kostjucenko, “Some questions in spectral theory for partial differential equations”, Amer. Math. Soc. Transltions: Series II, 105, 1976, 1-53 | Zbl
[4] G.S. Akopyan, R.L. Shakhbagyan, “Smeshannaya kraevaya zadacha dlya vyrozhdayuschikhsya nelineinykh uravnenii tipa Soboleva vysokogo poryadka”, Izv. NAN Armenii. Matematika, 30:1 (1995), 17–32 | MR | Zbl
[5] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[6] A. A. Mamikonyan, “Nachalno-kraevaya zadacha dlya odnogo klassa nelineinykh uravnenii tipa Soboleva”, Uch. zapiski EGU, ser. Fizika i Matematika, 2006, no. 2, 33–40 | Zbl