Lyapunov function of semi-groups generated by a class of Sobolev type equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Lyapunov function the following initial boundary value problem for a class of Sobolev type equations is considered $$\left\{\begin{array}{l} A\left(\frac{\partial u}{\partial t}\right)+Bu=0,\\ u\Big|_{t=0}=u_0,\\ u\Big|_{\Sigma}=0, \end{array}\right.$$ where $A$ and $B$ are nonlinear operators of the following form: $$Au=-\sum_{i=1}^n\frac{\partial}{\partial x_i}a_i(x,\nabla u), \quad Bu=-\sum_{i=1}^n\frac{\partial}{\partial x_i}b_i(x,\nabla u).$$ The existence of Lyapunov function on the attractor of the semi-group generated by this equation is proved. It is given the construction of attractor by the fixed points of that semi-group.
@article{UZERU_2008_3_a0,
     author = {H. A. Mamikonyan},
     title = {Lyapunov function of semi-groups generated by a class of {Sobolev} type equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_3_a0/}
}
TY  - JOUR
AU  - H. A. Mamikonyan
TI  - Lyapunov function of semi-groups generated by a class of Sobolev type equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 3
EP  - 9
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_3_a0/
LA  - ru
ID  - UZERU_2008_3_a0
ER  - 
%0 Journal Article
%A H. A. Mamikonyan
%T Lyapunov function of semi-groups generated by a class of Sobolev type equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 3-9
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_3_a0/
%G ru
%F UZERU_2008_3_a0
H. A. Mamikonyan. Lyapunov function of semi-groups generated by a class of Sobolev type equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2008), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_2008_3_a0/

[1] Russian Math. Surveys, 38:4 (1983), 151–213 | DOI | MR | Zbl

[2] A.V. Babin, M.I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR

[3] G.S. Akopyan, R.L. Shakhbagyan, “Attraktory evolyutsionnykh sistem tipa Soboleva”, Izv. NAN Armenii. Matematika, 29:5 (1994), 27–37 | MR | Zbl

[4] G.S. Akopyan, R.L. Shakhbagyan, “Smeshannaya kraevaya zadacha dlya kvazilineinykh vyrozhdayuschikhsya evolyutsionnykh uravnenii vysokogo poryadka”, Izv. NAN Armenii. Matematika, 31:3 (1996), 5–29 | MR | Zbl

[5] A. A. Mamikonyan, “Nachalno-kraevaya zadacha dlya odnogo klassa nelineinykh uravnenii tipa Soboleva”, Uch. zapiski EGU, ser. Fizika i Matematika, 2006, no. 2, 33–40 | Zbl

[6] A. A. Mamikonyan, “Attraktory polugrupp, porozhdennykh odnim klassom uravnenii tipa Soboleva”, Uch. zapiski EGU, ser. Fizika i Matematika, 2008, no. 1, 18–23 | Zbl