Solution of the Cauchy problem for a degenerate parabolic equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 18-22
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the Mellin transformation the solution of the Cauchy problem for one type degenerate a parabolic equation is constructed.
@article{UZERU_2008_2_a2,
author = {A. O. Oganesyan and S. G. Rafayelyan},
title = {Solution of the {Cauchy} problem for a degenerate parabolic equation},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {18--22},
year = {2008},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/}
}
TY - JOUR AU - A. O. Oganesyan AU - S. G. Rafayelyan TI - Solution of the Cauchy problem for a degenerate parabolic equation JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2008 SP - 18 EP - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/ LA - ru ID - UZERU_2008_2_a2 ER -
%0 Journal Article %A A. O. Oganesyan %A S. G. Rafayelyan %T Solution of the Cauchy problem for a degenerate parabolic equation %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2008 %P 18-22 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/ %G ru %F UZERU_2008_2_a2
A. O. Oganesyan; S. G. Rafayelyan. Solution of the Cauchy problem for a degenerate parabolic equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/