Solution of the Cauchy problem for a degenerate parabolic equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the Mellin transformation the solution of the Cauchy problem for one type degenerate a parabolic equation is constructed.
@article{UZERU_2008_2_a2,
     author = {A. O. Oganesyan and S. G. Rafayelyan},
     title = {Solution of the {Cauchy} problem for a degenerate parabolic equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--22},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/}
}
TY  - JOUR
AU  - A. O. Oganesyan
AU  - S. G. Rafayelyan
TI  - Solution of the Cauchy problem for a degenerate parabolic equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 18
EP  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/
LA  - ru
ID  - UZERU_2008_2_a2
ER  - 
%0 Journal Article
%A A. O. Oganesyan
%A S. G. Rafayelyan
%T Solution of the Cauchy problem for a degenerate parabolic equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 18-22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/
%G ru
%F UZERU_2008_2_a2
A. O. Oganesyan; S. G. Rafayelyan. Solution of the Cauchy problem for a degenerate parabolic equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a2/

[1] Z. Szmydt, B. Ziemian, The Mellin Transformation and Fuchsian Type Partial Differential Equations, Kluwer Academic Publishers, 1992 | MR | Zbl

[2] M.M. Dzhrbashyan, Integralnye preobrazovaniya i predstavleniya funktsii v kompleksnoi oblasti., Nauka, M., 1966