One standard convolution identity
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 148-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one standard convolution identity of vector space is considered. This identity can be presented as a determinant of operators.
@article{UZERU_2008_2_a13,
     author = {A. M. Movsisyan},
     title = {One standard convolution identity},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {148--149},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a13/}
}
TY  - JOUR
AU  - A. M. Movsisyan
TI  - One standard convolution identity
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 148
EP  - 149
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a13/
LA  - ru
ID  - UZERU_2008_2_a13
ER  - 
%0 Journal Article
%A A. M. Movsisyan
%T One standard convolution identity
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 148-149
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a13/
%G ru
%F UZERU_2008_2_a13
A. M. Movsisyan. One standard convolution identity. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 148-149. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a13/

[1] J. Soviet Math., 27:4 (1984), 2993–2996 | DOI | MR | Zbl | Zbl

[2] A. M. Movsisyan, “Svertochnye mnogochleny i mnozhestva”, Uchenye Zapiski EGU (Estestvennye Nauki), 2001, no. 2, 9–13

[3] Yu.P. Razmyslov, Tozhdestva algebr i ikh predstavlenii, M., 1989 | MR