On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 145-147.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article an inequality is proved, which estimates the norm in $L_2$ of the gradient of a generalized (belonging to $W^1_{2,loc}$) solution of a second order elliptic equation over the strict interior subregion through the norms in $L_2$ of the solution itself and the right hand side of the equation.
@article{UZERU_2008_2_a12,
     author = {V. Zh. Dumanyan},
     title = {On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {145--147},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/}
}
TY  - JOUR
AU  - V. Zh. Dumanyan
TI  - On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 145
EP  - 147
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/
LA  - ru
ID  - UZERU_2008_2_a12
ER  - 
%0 Journal Article
%A V. Zh. Dumanyan
%T On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 145-147
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/
%G ru
%F UZERU_2008_2_a12
V. Zh. Dumanyan. On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 145-147. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/

[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1967

[2] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1987

[3] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR