On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 145-147
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article an inequality is proved, which estimates the norm in $L_2$ of the gradient of a generalized (belonging to $W^1_{2,loc}$) solution of a second order elliptic equation over the strict interior subregion through the norms in $L_2$ of the solution itself and the right hand side of the equation.
@article{UZERU_2008_2_a12,
author = {V. Zh. Dumanyan},
title = {On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {145--147},
year = {2008},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/}
}
TY - JOUR AU - V. Zh. Dumanyan TI - On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2008 SP - 145 EP - 147 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/ LA - ru ID - UZERU_2008_2_a12 ER -
%0 Journal Article %A V. Zh. Dumanyan %T On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2008 %P 145-147 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/ %G ru %F UZERU_2008_2_a12
V. Zh. Dumanyan. On the estimation of $\int|\nabla u|^2dx$ for solutions of second order elliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 145-147. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a12/
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1967
[2] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1987
[3] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR