On the intuitive set theory and its formalization
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper investigates the reasons of occurrence of known paradoxes in the intuitive set theory. We have proved that the process of formation of sets is non-finishing, and the reason of occurrence of paradoxes consists in representation of formation of sets as a finishing process (in other words, the reason of occurrence of paradoxes is the identification of concepts of a set and a class). The possibility of full formalization of the intuitive set theory is suspected.
@article{UZERU_2008_2_a0,
     author = {I. G. Khachatryan},
     title = {On the intuitive set theory and its formalization},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--12},
     publisher = {mathdoc},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_2_a0/}
}
TY  - JOUR
AU  - I. G. Khachatryan
TI  - On the intuitive set theory and its formalization
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 3
EP  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_2_a0/
LA  - ru
ID  - UZERU_2008_2_a0
ER  - 
%0 Journal Article
%A I. G. Khachatryan
%T On the intuitive set theory and its formalization
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 3-12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_2_a0/
%G ru
%F UZERU_2008_2_a0
I. G. Khachatryan. On the intuitive set theory and its formalization. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2008), pp. 3-12. http://geodesic.mathdoc.fr/item/UZERU_2008_2_a0/

[1] S. K.Klini, Vvedenie v metamatematiku, IL, M., 1957

[2] S. K. Klini, Matematicheskaya logika, Mir, M., 1973

[3] Kh. B. Karri, Osnovaniya matematicheskoi logiki, Mir, M., 1969

[4] И. П. Натансон Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974

[5] N. Burbaki, Teoriya mnozhestv, Mir, M., 1965

[6] Dzh. Shenfild, Matematicheskaya logika, Nauka, M., 1975

[7] К. Куратовский, А. Мостовский Teoriya mnozhestv, Mir, M., 1970

[8] T. Iekh, Teoriya mnozhestv i metod forsinga, Mir, M., 1973

[9] P. Dzh. Koen, Teoriya mnozhestv i kontinuum-gipoteza, Mir, M., 1969

[10] Dzh. L. Kelli, Obschaya topologiya, Nauka, M., 1968

[11] P. Kon, Universalnaya algebra, Mir, M., 1968