Weighted classes of harmonic functions $b_{\alpha}^{ p}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the weighted spaces $b_{\alpha}^p$ of functions harmonic in the unit ball $B\subset R^n$ are introduced. The reproducing kernel $K_{\alpha}$ is constructed by means of which for functions belonging to $b_{\alpha}^p$ the integral representation is obtained.
@article{UZERU_2008_1_a0,
     author = {A. I. Petrosyan},
     title = {Weighted classes of harmonic functions $b_{\alpha}^{ p}$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2008_1_a0/}
}
TY  - JOUR
AU  - A. I. Petrosyan
TI  - Weighted classes of harmonic functions $b_{\alpha}^{ p}$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2008
SP  - 3
EP  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2008_1_a0/
LA  - ru
ID  - UZERU_2008_1_a0
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%T Weighted classes of harmonic functions $b_{\alpha}^{ p}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2008
%P 3-9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2008_1_a0/
%G ru
%F UZERU_2008_1_a0
A. I. Petrosyan. Weighted classes of harmonic functions $b_{\alpha}^{ p}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2008), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_2008_1_a0/

[1] Sh. Axler, P. Bourdon, W. Ramey, Harmonic function theory, Springer-Verlag, Inc., New York, 2001 | MR | Zbl

[2] W. Rudin, Real and complex analysis, McGraw-Hill, New York, 1987 | MR | Zbl