Commutative abelian algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 44-51

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper commutative abelian binary algebras are studied by applying the construction of the algebra of semiterms. We have found the necessary condition when any hyperidentity (i.e. $\forall(\forall)$-identity) is satisfied in all abelian commutative binary algebras.
@article{UZERU_2007_3_a5,
     author = {S. S. Davidov},
     title = {Commutative abelian algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--51},
     publisher = {mathdoc},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/}
}
TY  - JOUR
AU  - S. S. Davidov
TI  - Commutative abelian algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 44
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/
LA  - ru
ID  - UZERU_2007_3_a5
ER  - 
%0 Journal Article
%A S. S. Davidov
%T Commutative abelian algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 44-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/
%G ru
%F UZERU_2007_3_a5
S. S. Davidov. Commutative abelian algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 44-51. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/