Commutative abelian algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 44-51
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper commutative abelian binary algebras are studied by applying the construction of the algebra of semiterms. We have found the necessary condition when any hyperidentity (i.e. $\forall(\forall)$-identity) is satisfied in all abelian commutative binary algebras.
@article{UZERU_2007_3_a5,
author = {S. S. Davidov},
title = {Commutative abelian algebras},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {44--51},
year = {2007},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/}
}
S. S. Davidov. Commutative abelian algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 44-51. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a5/
[1] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl
[2] J. Jezek, T. Kepka, Medial groupoids, Praha, 1983
[3] A. G. Kurosh, Obschaya algebra, Nauka, M., 1974 | MR
[4] A.B. Romanowska, J.D.H. Smith, Modes, World Scientific, Singapore, 2002 | MR | Zbl
[5] Yu.M. Movsisyan, Vvedenie v teoriyu algebr so sverkhtozhdestvami, Izd-vo EGU, Er., 1986 | MR
[6] Yu.M. Movsisyan, “Hyperidentities and hypervarieties”, Scientiae Mathematicae Japonicae, 54:3 (2001), 595–640 | MR | Zbl
[7] S.S. Davidov, “Binarnye termy i polutermy”, Uchenye zapiski EGU, 2004, no. 1, 34–42