About a generalization of Abel’s formulae
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 25-32
Cet article a éte moissonné depuis la source Math-Net.Ru
One generalization of formulae of Abel concerning to the Fermat’s last theorem is received. Supposing that the theorem is not true, for the solution of the equation the necessary condition is obtained. In the case when none of the numbers is divided by $p$, we get a simple proof of the Theorem for $p=3$ and $p=5$.
@article{UZERU_2007_3_a3,
author = {Y{\cyre}. S. Mkrtchyan},
title = {About a generalization of {Abel{\textquoteright}s} formulae},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {25--32},
year = {2007},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2007_3_a3/}
}
Yе. S. Mkrtchyan. About a generalization of Abel’s formulae. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2007), pp. 25-32. http://geodesic.mathdoc.fr/item/UZERU_2007_3_a3/
[1] M. M. Postnikov, Teorema Ferma, Nauka, M., 1978, 128 pp. | MR
[2] C. McMullen, “From dynamics on surfaces to rational points on curves”, Bull. Amer. Math. Sos., 37 (2000), 119–140 | DOI | MR | Zbl
[3] A. Wiles, “Modular Elliptic Curves and Fermat's Last Theorem”, Ann. of Math., 141 (1995), 443–551 | DOI | MR | Zbl
[4] Bukhshtab A.A., Teoriya chisel, Prosveschenie, M., 1966, 384 pp. | MR