Diffraction of Love wave in the medium with piecewise homogeneous elastic infinite inclusion
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Diffraction of Love Wave in elastic medium is considered from the boundary where two semi-infinite elastic layers are departed. The problem is brought to the solution of Viener–Hopf functional equation due to Furie transformators of contact stress amplitudes Asymptotic formulas are obtained for contact stress amplitudes in the farther zone and in the departing of thin layers.
@article{UZERU_2007_2_a5,
     author = {{\CYRA}. R. Voskanyan},
     title = {Diffraction of {Love} wave in the medium with piecewise homogeneous elastic infinite inclusion},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {45--52},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a5/}
}
TY  - JOUR
AU  - А. R. Voskanyan
TI  - Diffraction of Love wave in the medium with piecewise homogeneous elastic infinite inclusion
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 45
EP  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a5/
LA  - ru
ID  - UZERU_2007_2_a5
ER  - 
%0 Journal Article
%A А. R. Voskanyan
%T Diffraction of Love wave in the medium with piecewise homogeneous elastic infinite inclusion
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 45-52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_2_a5/
%G ru
%F UZERU_2007_2_a5
А. R. Voskanyan. Diffraction of Love wave in the medium with piecewise homogeneous elastic infinite inclusion. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 45-52. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a5/

[1] A.R. Voskanyan, E.Kh. Grigoryan, “Difraktsiya sdvigovoi ploskoi volny v uprugom prostranstve s kusochno-odnorodnym beskonechnym uprugim vklyucheniem”, Izv. NAN RA. Mekhanika, 60:2 (2007), 3–20 | MR

[2] V.K. Novatskii, Teoriya uprugosti, Mir, M., 1975, 872 pp. | MR

[3] L.S. Leibenzon, Kurs teorii uprugosti, Gostekhizdat, M., 1947, 464 pp. | MR

[4] A.V. Gevorkyan, “Ob odnoi zadache difraktsii voln Lyava”, Prochnost, zhestkost i tekhnologichnost izdelii iz kompozitsionnykh materialov, Materialy Vtoroi vsesoyuznoi tekhnicheskoi konferentsii, v. 1, Er., 1984, 162–167

[5] K.L. Agayan, E.Kh. Grigoryan, S.A. Dzhilavyan, “Difraktsiya sdvigovoi ploskoi voln v uprugom prostranstve s polubeskonechnym uprugim vklyucheniem”, Izv. NAN RA. Mekhanika, 56:4 (2003), 3–17 | MR

[6] E.Kh. Grigoryan, K.L. Agayan, S.A. Dzhilavyan, “Difraktsiya lokalizovannoi sdvigovoi volny v uprugom prostranstve s polubeskonechnym vklyucheniem”, Smeshannye zadachi mekhaniki deformiruemogo tela, Materialy Ros. mezhd. konf., Saratov, 2005, 105–107

[7] B. Nobl, Metod Vinera–Khopfa, Mir, M., 1962, 279 pp. | MR