Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 35-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work considers contact problems for elastic half-plane and the infinite plate the boundary of which $y=0$ (in plane $xoy$) is strengthened by elastic stringers (overlays) which consist of two semi infinite parts and one separate finite part. It is supposed that contact interaction in finite part is realized by a thin layer of glue (another physicomechanical characteristic) and stringers are deformed under the action of horizontal forces. Using generalized Fourier transforms the determinational problem of unknown contact stresses is reduced to the system of singular integrodifferential equations with Cauchy’s Kernel within the finite intervals. The solution is constructed using Chebishev polynomials. The particular cases are considered and the character of the change contact stresses are illustrated in different contact parts.
@article{UZERU_2007_2_a4,
     author = {A. V. Kerobyan},
     title = {Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--44},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/}
}
TY  - JOUR
AU  - A. V. Kerobyan
TI  - Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 35
EP  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/
LA  - ru
ID  - UZERU_2007_2_a4
ER  - 
%0 Journal Article
%A A. V. Kerobyan
%T Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 35-44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/
%G ru
%F UZERU_2007_2_a4
A. V. Kerobyan. Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 35-44. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/

[1] E.Kh. Grigoryan, B.A. Meltonyan, “Ob odnoi zadache dlya uprugoi poluploskosti, ukreplennoi na svoei granitse uprugimi nakladkami”, Uchenye zapiski EGU, 1984, no. 1, 46–51 | Zbl

[2] J. L. Lubkin, L. C. Lewis, “Adhesive shear flow for an axially-loaded, finite stringer bonded to an infinite sheet”, Quart J. of Mech. and Applied Math., v 23 (1970), 521 | DOI | Zbl

[3] E. Kh. Grigoryan, A. V. Keropyan, V. S. Sarkisyan, Izv. RAN, MTT, 1992, no. 3, 180–184

[4] V. S. Sarkisyan, A. V. Keropyan, “Kontaktnye zadachi dlya uprugikh tel, na granitse kotorykh prikleen lineino ili nelineino deformiruemyi stringer konechnoi dliny”, Kontaktnye i smeshannye granichnye zadachi mekhaniki deformiruemogo tverdogo tela, Sb. nauchnykh trudov, NAN Armenii, Er., 1999, 126–132

[5] E.Kh. Grigoryan, “O reshenii zadachi dlya uprugoi beskonechnoi plastiny, na poverkhnosti kotoroi prikleen stringer konechnoi dliny”, Izv. NAN Armenii. Mekhanika, 2000, no. 4, 11–16

[6] E. Kh. Grigoryan, A. V. Keropyan, S. S. Shaginyan, “Kontaktnaya zadacha dlya beskonechnoi plastiny s dvumya konechnymi stringerami, odin iz kotorykh skleen s nei, a drugoi nakhoditsya v idealnom kontakte”, Izv. NAN Armenii. Mekhanika, 2002, no. 2, 14–23

[7] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 415 | MR

[8] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.

[9] E. Kh. Grigoryan, E.A. Manukyan, “Ob odnoi zadache dlya uprugoi ploskosti s chastichno skreplennym beskonechnym uprugim vklyucheniem”, Uchenye zapiski EGU, 1981, no. 1, 51–59 | Zbl

[10] V. M. Aleksandrov, S. M. Mkhitaryan K, Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1983, 487 pp. | MR

[11] G. Ya. Popov, Kontaktnye zadachi dlya lineino deformiruemogo osnovaniya, Vischa shkola, Kiev–Odessa, 1982, 167 pp. | MR