Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2007_2_a4, author = {A. V. Kerobyan}, title = {Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {35--44}, publisher = {mathdoc}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/} }
TY - JOUR AU - A. V. Kerobyan TI - Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2007 SP - 35 EP - 44 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/ LA - ru ID - UZERU_2007_2_a4 ER -
%0 Journal Article %A A. V. Kerobyan %T Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2007 %P 35-44 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/ %G ru %F UZERU_2007_2_a4
A. V. Kerobyan. Contact problems for the elastic half-plane and the infinite plate which are strengthened to partially glued stringers. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 35-44. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a4/
[1] E.Kh. Grigoryan, B.A. Meltonyan, “Ob odnoi zadache dlya uprugoi poluploskosti, ukreplennoi na svoei granitse uprugimi nakladkami”, Uchenye zapiski EGU, 1984, no. 1, 46–51 | Zbl
[2] J. L. Lubkin, L. C. Lewis, “Adhesive shear flow for an axially-loaded, finite stringer bonded to an infinite sheet”, Quart J. of Mech. and Applied Math., v 23 (1970), 521 | DOI | Zbl
[3] E. Kh. Grigoryan, A. V. Keropyan, V. S. Sarkisyan, Izv. RAN, MTT, 1992, no. 3, 180–184
[4] V. S. Sarkisyan, A. V. Keropyan, “Kontaktnye zadachi dlya uprugikh tel, na granitse kotorykh prikleen lineino ili nelineino deformiruemyi stringer konechnoi dliny”, Kontaktnye i smeshannye granichnye zadachi mekhaniki deformiruemogo tverdogo tela, Sb. nauchnykh trudov, NAN Armenii, Er., 1999, 126–132
[5] E.Kh. Grigoryan, “O reshenii zadachi dlya uprugoi beskonechnoi plastiny, na poverkhnosti kotoroi prikleen stringer konechnoi dliny”, Izv. NAN Armenii. Mekhanika, 2000, no. 4, 11–16
[6] E. Kh. Grigoryan, A. V. Keropyan, S. S. Shaginyan, “Kontaktnaya zadacha dlya beskonechnoi plastiny s dvumya konechnymi stringerami, odin iz kotorykh skleen s nei, a drugoi nakhoditsya v idealnom kontakte”, Izv. NAN Armenii. Mekhanika, 2002, no. 2, 14–23
[7] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979, 415 | MR
[8] V. S. Sarkisyan, Kontaktnye zadachi dlya poluploskostei i polos s uprugimi nakladkami, Izd-vo EGU, Er., 1983, 259 pp.
[9] E. Kh. Grigoryan, E.A. Manukyan, “Ob odnoi zadache dlya uprugoi ploskosti s chastichno skreplennym beskonechnym uprugim vklyucheniem”, Uchenye zapiski EGU, 1981, no. 1, 51–59 | Zbl
[10] V. M. Aleksandrov, S. M. Mkhitaryan K, Kontaktnye zadachi dlya tel s tonkimi pokrytiyami i prosloikami, Nauka, M., 1983, 487 pp. | MR
[11] G. Ya. Popov, Kontaktnye zadachi dlya lineino deformiruemogo osnovaniya, Vischa shkola, Kiev–Odessa, 1982, 167 pp. | MR