The stability of one reliability model
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 12-16
Cet article a éte moissonné depuis la source Math-Net.Ru
A special class of reliability system with different elements and with continuous distribution function of non-failure operation times of elements is considered. Under the given conditions the non-failure operation time distribution functions of any system from this class is also continuous. The uniform hyper Erlang approximation for the distribution function of non-failure operation time is constructed. Then the stability of the system in uniform metrics by parameters of hyper Erlang approximation is established.
@article{UZERU_2007_2_a1,
author = {S. M. Narimanyan and T. Z. Khachikyan},
title = {The stability of one reliability model},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {12--16},
year = {2007},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/}
}
TY - JOUR AU - S. M. Narimanyan AU - T. Z. Khachikyan TI - The stability of one reliability model JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2007 SP - 12 EP - 16 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/ LA - ru ID - UZERU_2007_2_a1 ER -
S. M. Narimanyan; T. Z. Khachikyan. The stability of one reliability model. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 12-16. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/
[1] I. N.Kovalenko, A. A. Filippova, Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya shkola, M., 1973
[2] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR