The stability of one reliability model
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 12-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special class of reliability system with different elements and with continuous distribution function of non-failure operation times of elements is considered. Under the given conditions the non-failure operation time distribution functions of any system from this class is also continuous. The uniform hyper Erlang approximation for the distribution function of non-failure operation time is constructed. Then the stability of the system in uniform metrics by parameters of hyper Erlang approximation is established.
@article{UZERU_2007_2_a1,
     author = {S. M. Narimanyan and T. Z. Khachikyan},
     title = {The  stability  of  one  reliability  model},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--16},
     publisher = {mathdoc},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/}
}
TY  - JOUR
AU  - S. M. Narimanyan
AU  - T. Z. Khachikyan
TI  - The  stability  of  one  reliability  model
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 12
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/
LA  - ru
ID  - UZERU_2007_2_a1
ER  - 
%0 Journal Article
%A S. M. Narimanyan
%A T. Z. Khachikyan
%T The  stability  of  one  reliability  model
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 12-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/
%G ru
%F UZERU_2007_2_a1
S. M. Narimanyan; T. Z. Khachikyan. The  stability  of  one  reliability  model. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2007), pp. 12-16. http://geodesic.mathdoc.fr/item/UZERU_2007_2_a1/

[1] I. N.Kovalenko, A. A. Filippova, Teoriya veroyatnostei i matematicheskaya statistika, Vysshaya shkola, M., 1973

[2] V. V. Petrov, Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR