Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2007_1_a1, author = {H. S. Harutyunyan}, title = {Chord length distribution function for a regular hexagon}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {17--24}, publisher = {mathdoc}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/} }
TY - JOUR AU - H. S. Harutyunyan TI - Chord length distribution function for a regular hexagon JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2007 SP - 17 EP - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/ LA - ru ID - UZERU_2007_1_a1 ER -
H. S. Harutyunyan. Chord length distribution function for a regular hexagon. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2007), pp. 17-24. http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/
[1] R.V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley and Sons, Chichester, 1982 | MR | Zbl
[2] R. V. Ambartsumyan I. Mekke D. Shtoyan, Vvedenie v stokhasticheskuyu geometriyu, Nauka, M., 1990 | MR
[3] R. Sulanke, “Die Verteilung der Sehnenléingen an ebenen und räumlichen Figuren”, Math. Nach., 23 (1961), 51–74 | DOI | MR | Zbl
[4] W. Gille, “The chord length distribution of parallelepipeds with their limiting cases”, Exp. Techn. Phys., 36 (1988), 197–208
[5] N. G. Agaronyan V. K. Oganyan, “Funktsii raspredeleniya dliny khordy dlya mnogougolnikov”, Izv. NAN Armenii, Matematika, 40:4 (2005), 43–56 | MR | Zbl
[6] G.E. Shilov, Matematicheskii analiz. Vtoroi spets. Kurs, 2-e izd., MGU, M., 1984 | MR