Chord length distribution function for a regular hexagon
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2007), pp. 17-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper elementary expression for the chord length distribution function of a regular hexagon is obtained. The formula is derived using $\delta$-formalism in Pleijel identity.
@article{UZERU_2007_1_a1,
     author = {H. S. Harutyunyan},
     title = {Chord length distribution function for a regular hexagon},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--24},
     publisher = {mathdoc},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/}
}
TY  - JOUR
AU  - H. S. Harutyunyan
TI  - Chord length distribution function for a regular hexagon
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2007
SP  - 17
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/
LA  - ru
ID  - UZERU_2007_1_a1
ER  - 
%0 Journal Article
%A H. S. Harutyunyan
%T Chord length distribution function for a regular hexagon
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2007
%P 17-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/
%G ru
%F UZERU_2007_1_a1
H. S. Harutyunyan. Chord length distribution function for a regular hexagon. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2007), pp. 17-24. http://geodesic.mathdoc.fr/item/UZERU_2007_1_a1/

[1] R.V. Ambartzumian, Combinatorial Integral Geometry with Applications to Mathematical Stereology, John Wiley and Sons, Chichester, 1982 | MR | Zbl

[2] R. V. Ambartsumyan I. Mekke D. Shtoyan, Vvedenie v stokhasticheskuyu geometriyu, Nauka, M., 1990 | MR

[3] R. Sulanke, “Die Verteilung der Sehnenléingen an ebenen und räumlichen Figuren”, Math. Nach., 23 (1961), 51–74 | DOI | MR | Zbl

[4] W. Gille, “The chord length distribution of parallelepipeds with their limiting cases”, Exp. Techn. Phys., 36 (1988), 197–208

[5] N. G. Agaronyan V. K. Oganyan, “Funktsii raspredeleniya dliny khordy dlya mnogougolnikov”, Izv. NAN Armenii, Matematika, 40:4 (2005), 43–56 | MR | Zbl

[6] G.E. Shilov, Matematicheskii analiz. Vtoroi spets. Kurs, 2-e izd., MGU, M., 1984 | MR