Cayley’s theorem for De Morgan algebras
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 136-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a Cayley’s theorem is proved for De Morgan algebras. The theorem gives a representation of De Morgan algebras by some class of binary functions.
@article{UZERU_2006_3_a7,
     author = {L. R. Nurbekyan},
     title = {Cayley{\textquoteright}s theorem for {De} {Morgan} algebras},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {136--138},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_3_a7/}
}
TY  - JOUR
AU  - L. R. Nurbekyan
TI  - Cayley’s theorem for De Morgan algebras
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 136
EP  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_3_a7/
LA  - ru
ID  - UZERU_2006_3_a7
ER  - 
%0 Journal Article
%A L. R. Nurbekyan
%T Cayley’s theorem for De Morgan algebras
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 136-138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_3_a7/
%G ru
%F UZERU_2006_3_a7
L. R. Nurbekyan. Cayley’s theorem for De Morgan algebras. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 136-138. http://geodesic.mathdoc.fr/item/UZERU_2006_3_a7/

[1] Math. USSR-Izv., 35:2 (1990), 377–391 | DOI | MR | Zbl

[2] Bloom S.L., EsikZ., Manes E.G., “A Cayley Theorem for Boolean Algebras”, Amer. Math. Monthly, 97:9 (1990), 831–833 | DOI | MR | Zbl

[3] Eslk Z., “A Cayley Theorem for Ternary Algebras”, International Journal of Algebra and Computation, 8:3 (1998), 311–316 | DOI | MR

[4] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl