Surface electroelastic shear waves in a system of piezoactive layer and half-space
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A piezoactive half-space with a piezoactive layer on its surface is considered. Materials of the layer and the half-space are piezoelectrics of class 6 mm with different properties. Shear stresses between the two piezoelectrics are taken to be zero. Interaction between shear waves in the layer and the half-space is due to continuity of electrical field on their surface. Existence condition of the surface waves is obtained. It is established, that two waves of Gulayev–Bleustain type can exist in considered system
@article{UZERU_2006_3_a2,
     author = {V. M. Belubekyan and M. V. Belubekyan},
     title = {Surface electroelastic shear waves in a system of piezoactive layer and half-space},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {25--30},
     publisher = {mathdoc},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_3_a2/}
}
TY  - JOUR
AU  - V. M. Belubekyan
AU  - M. V. Belubekyan
TI  - Surface electroelastic shear waves in a system of piezoactive layer and half-space
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 25
EP  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_3_a2/
LA  - ru
ID  - UZERU_2006_3_a2
ER  - 
%0 Journal Article
%A V. M. Belubekyan
%A M. V. Belubekyan
%T Surface electroelastic shear waves in a system of piezoactive layer and half-space
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 25-30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_3_a2/
%G ru
%F UZERU_2006_3_a2
V. M. Belubekyan; M. V. Belubekyan. Surface electroelastic shear waves in a system of piezoactive layer and half-space. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 25-30. http://geodesic.mathdoc.fr/item/UZERU_2006_3_a2/

[1] Danoyan Z.N., Manukyan G.A., “O poverkhnostnykh elektrouprugikh volnakh Lyava v pezoelektricheskikh podlozhkakh s metallizirovannym dielektricheskim sloem”, Izv. NAN Armenii. Mekhanika, 48:3 (1995), 43–52

[2] Danoyan Z.N., Lineinye i nelineinye volny v elektromagnitouprugikh sredakh, Avtoref. na soiskanie uch. st. dokt. fiz.-mat, nauk, Er., 2005, 42 pp.

[3] Maerfeld S., Tournois P., “Pure Shear Elastic Surface Wave Guided by the Interface of Two Semi-Infinite Media”, Appl. Phys. Lett., 19:4 (1971), 117–121 | DOI

[4] Avetisyan A.C., Margaryan Dzh., “Elektrouprugie poverkhnostnye volny sdviga na granitse razdela dvukh pezoelektricheskikh poluprostranstv.”, Izv. NAN Armenii. Mekhanika, 47:3-4 (1994), 31–36

[5] Li Sh., “The electromagneto-acoustic surface wave in a piezoelectric medium: The Bleustein-Gulyaev mode”, J. Appl. Phys., 80:9 (1996), 5264–5267 | DOI

[6] Zakharenko A. Love-type waves in layered systems consisting of two cubic piezoelectric crystals, Journal of sound and vibration, 285 (2005), 877—886 | DOI

[7] Belubekyan M.V., Belubekyan V.M., “O sdvigovoi volne lokalizovannoi vdol dvizhuscheisya granitsy razdela pezoelektrikov”, Izv. NAN Armenii. Mekhanika, 47:3–4 (1994), 78–82

[8] Balakirev M.K., Gnlinskii I.A., Volny v pezokristallakh, Nauka, Novosibirsk, 1982, 239 pp.

[9] Bardzokas D.I., Kudryavtsev B.A., Senik N.A., Rasprostranenie voln v elektromagnitouprugikh sredakh, Editoriel URSS, M., 2003, 336 pp.

[10] Royer D., Dieulesaint E., Elastic waves in solids, v. 1, Masson, 1999, 446 pp. | MR