About characteristic equation for two-parameter matrix equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 21-24
Cet article a éte moissonné depuis la source Math-Net.Ru
In the work one characteristic function is defined for matrix, which allows to get comfortable form to study the characteristic equation for two-parameter matrix equation.
@article{UZERU_2006_3_a1,
author = {G. H. Sahakyan},
title = {About characteristic equation for two-parameter matrix equation},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {21--24},
year = {2006},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2006_3_a1/}
}
TY - JOUR AU - G. H. Sahakyan TI - About characteristic equation for two-parameter matrix equation JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2006 SP - 21 EP - 24 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2006_3_a1/ LA - ru ID - UZERU_2006_3_a1 ER -
G. H. Sahakyan. About characteristic equation for two-parameter matrix equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2006), pp. 21-24. http://geodesic.mathdoc.fr/item/UZERU_2006_3_a1/
[1] Binding R.A., Browne P.J., “Spectral properties of two parameter eigenvalue problems II”, Proc. R. Soc. Edinburg, 106A (1987) | MR
[2] Browne P.J., Ordinary and Partial Differential Equations, 2 (1989), 52–60
[3] Saakyan G.G., Obrazovanie i Nauka v Artsakhe, 2005, no. 1—2, 152–155
[4] Gelfand I.M., Lektsii po lineinoi algebre, Nauka, M., 1971 | MR
[5] Edwards S.N., David E.R., Elementary Linear Algebra, New Jersey, 1988