Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions II. Multigrid preconditioner
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 41-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper, consisting of two parts, is devoted to constructing algebraic multigrid preconditioners for stiffness matrices arising in finite element approximation of elliptic problems in rectangular domains. The Dirichlet condition is placed on one part of the boundary and third type condition on the rest of the boundary. In the second part, using a sequence of two-grid preconditioners from [1], the multigrid preconditioner with inner Chebyshev iterations is constructed.
@article{UZERU_2006_2_a3,
     author = {A. B. Grigorian},
     title = {Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions {II.} {Multigrid} preconditioner},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {41--48},
     publisher = {mathdoc},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_2_a3/}
}
TY  - JOUR
AU  - A. B. Grigorian
TI  - Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions II. Multigrid preconditioner
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 41
EP  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_2_a3/
LA  - ru
ID  - UZERU_2006_2_a3
ER  - 
%0 Journal Article
%A A. B. Grigorian
%T Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions II. Multigrid preconditioner
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 41-48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_2_a3/
%G ru
%F UZERU_2006_2_a3
A. B. Grigorian. Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions II. Multigrid preconditioner. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2006), pp. 41-48. http://geodesic.mathdoc.fr/item/UZERU_2006_2_a3/

[1] A. B. Grigoryan, “Algebraicheskii mnogosetochnyi pereobuslavlivatel dlya ellipticheskikh zadach s kraevymi usloviyami smeshannogo tipa. I. Dvukhsetochnye pereobuslavlivateli”, Uch. zapiski EGU, ser. Fizika i Matematika, 2006, no. 1, 37–48 | MR | Zbl

[2] Voevodin V.V., Kuznetsov Yu.A., Matritsy i vychisleniya, Nauka, M., 1984 | MR

[3] Samarskii A.A., Nikolaev E.S., Metody resheniya setochnykh uravnenii., Nauka, M., 1978 | MR

[4] Kuznetsov Yu.A., “Algebraic multigrid domain decomposition methods”, Sov. J. Numer. Anal. Math. Modelling, 4:5 (1989), 351–379 | DOI | MR | Zbl

[5] Hakopian Yu.R., Kuznetsov Yu.A., “Algebraic multigrid / substructuring preconditioners on triangular grids”, Sov. J. Numer. Anal. Math. Modelling, 6:6 (1991), 453–483 | DOI | MR | Zbl

[6] Axelsson O. Vassilevski P.S., “Asymptotic work estimates for AMLI methods”, Appl. Numer. Math., 7 (1991), 437–451 | DOI | MR | Zbl