About stabilization and control of a rotation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 58-63
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the problems of optimum stabilization and optimum traffic control of rigid body rotating around a motionless point with the help of flywheels is solved. It is shown, that the system is not quite controlled only by gyroscopic forces. The dissipative forces arising from the rotation of flywheels are added to the system. Linear systems are considered and for them optimum stabilizing and controlling operations are found.
@article{UZERU_2006_1_a5,
author = {V. N. Grishkyan},
title = {About stabilization and control of a rotation},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {58--63},
year = {2006},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a5/}
}
V. N. Grishkyan. About stabilization and control of a rotation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 58-63. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a5/
[1] N.N. Bukhgolts, Osnovnoi kurs teoreticheskoi mekhaniki, Nauka, M., 1969
[2] V. V. Rumyantsev, Kosmicheskie issledovaniya, 6:5 (1968)
[3] E. B. Li, L. Markus, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972 | MR
[4] N.N. Krasovskii, Problemy stabilizatsii upravlyaemykh dvizhenii, Dop. 4 v kn. Malkina I.G. Teoriya ustoichivosti dvizheniya, Nauka, M., 1969 | MR
[5] N.N. Krasovskii, Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985 | MR