Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions. I. Two-grid preconditioners
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper, consisting of two parts, is devoted to constructing algebraic multigrid preconditioners for stiffness matrices arising in finite element approximation of elliptic problems in rectangular domain. The Dirichlet condition is placed on one part of the boundary and third type condition on the rest of the boundary. In the first part of the paper a sequence of two-grid preconditioners is described on the base of which the multigrid preconditioner will be constructed.
@article{UZERU_2006_1_a3,
     author = {A. B. Grigorian},
     title = {Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions. {I.} {Two-grid} preconditioners},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {37--48},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a3/}
}
TY  - JOUR
AU  - A. B. Grigorian
TI  - Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions. I. Two-grid preconditioners
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 37
EP  - 48
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_1_a3/
LA  - ru
ID  - UZERU_2006_1_a3
ER  - 
%0 Journal Article
%A A. B. Grigorian
%T Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions. I. Two-grid preconditioners
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 37-48
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_1_a3/
%G ru
%F UZERU_2006_1_a3
A. B. Grigorian. Algebraic multigrid preconditioner for elliptic problems with mixed type boundary conditions. I. Two-grid preconditioners. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 37-48. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a3/

[1] Yu.A. Kuznetsov, “Algebraic multigrid domain decomposition methods”, Sov. J. Numer. Anal. Math. Modelling, 4:5 (1989), 351–379 | DOI | MR | Zbl

[2] Yu. R. Hakopian, Yu. A. Kuznetsov, “Algebraic multigrid/substructuring preconditioners on triangular grids”, Sov. J. Numer. Anal. Math. Modelling, 6:6 (1991), 453–483 | DOI | MR | Zbl

[3] O. Axelsson, Yu.R. Hakopian, Yu. A. Kuznetsov, “Multilevel preconditioning for perturbed finite element matrices”, IMA J. Numer. Anal., 17 (1997), 125–149 | DOI | MR | Zbl

[4] Yu.R. Hakopian, H.A. Hovhannlsyan, “Algebraic multilevel preconditioners for third order finite element approximations in rectangular domains”, Algebra, Geometry their Applications (Seminar Proceedings. Yerevan State University), 2, 2002, 58–72 | MR | Zbl

[5] Yu.R. Hakopian, H.A. Hovhannlsyan, Computer Science and Information Technologies, Proceedings of CSIT’03 Conference (Yerevan, 2003), 327–330