Variation-difference schemes on coordinate condensed grids for biharmonic equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 29-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the study of behavior of the solution of first boundary problem for biharmonic equation in the neighborhood of angular point. It is proved that the solution of the problem can be represented in a certain form which allows constructing variation-difference schemes on non-regular grids. Exact estimations for convergence rate are obtained.
@article{UZERU_2006_1_a2,
     author = {Yu. G. Dadayan},
     title = {Variation-difference schemes on coordinate condensed grids for biharmonic equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {29--36},
     publisher = {mathdoc},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2006_1_a2/}
}
TY  - JOUR
AU  - Yu. G. Dadayan
TI  - Variation-difference schemes on coordinate condensed grids for biharmonic equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2006
SP  - 29
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2006_1_a2/
LA  - ru
ID  - UZERU_2006_1_a2
ER  - 
%0 Journal Article
%A Yu. G. Dadayan
%T Variation-difference schemes on coordinate condensed grids for biharmonic equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2006
%P 29-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2006_1_a2/
%G ru
%F UZERU_2006_1_a2
Yu. G. Dadayan. Variation-difference schemes on coordinate condensed grids for biharmonic equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2006), pp. 29-36. http://geodesic.mathdoc.fr/item/UZERU_2006_1_a2/

[1] L. A. Oganesyan, L.A. Rukhovets, Variatsionno-raznostnye metody resheniya ellipticheskikh uravnenii, Izd-vo AN Arm. SSR, Erevan, 1979 | MR

[2] V. A. Kondratev, “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. MMO, 16, Izdatelstvo Moskovskogo universiteta, M., 1967, 209–292 | MR | Zbl

[3] U.S.S.R. Comput. Math. Math. Phys., 12:5 (1972), 187–199 | DOI | MR | Zbl

[4] U.S.S.R. Comput. Math. Math. Phys., 15:2 (1975), 88–98 | DOI | MR | MR | Zbl

[5] Yu. G. Dadayan, L. A. Oganesyan, DAN Arm. SSR, 71:5 (1980), 275–281 | MR | Zbl

[6] Yu. G. Dadayan, Problemy dinamiki vzaimodeistviya deformiruemykh sred, «Gitutyun», Izd-vo AN Arm. SSR, Erevan, 2005